IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8923-d984271.html
   My bibliography  Save this article

Optimized Power Distribution Technology for Fast Frequency Response in Photovoltaic Power Stations

Author

Listed:
  • Shuchao Wang

    (School of Electrical Engineering, SouthEast University, Nanjing 210096, China)

  • Shenpeng Duan

    (NR Electric Co., Ltd., Nanjing 211102, China)

  • Gaoxiang Mi

    (NR Electric Co., Ltd., Nanjing 211102, China)

  • Yuping Lu

    (School of Electrical Engineering, SouthEast University, Nanjing 210096, China)

Abstract

The fast frequency response (FFR) function in renewable energy source (RES)-based power stations has proved to be able to improve the frequency stability of power systems with high RES penetration significantly. However, most current FFR functions in photovoltaic (PV) power stations typically show power response deviations and unnecessary power loss issues that are caused by inadequate station power distribution strategies. This is particularly important in cases where the power must be increased when the system frequency shows a downward disturbance. This paper proposes a new distribution strategy for FFR in PV power stations and studies related distribution strategies, system structures, calculation algorithms, function execution effect, and active power regulation technology. The proposed approach uses a proportional distribution strategy based on an evaluation of the real-time potential maximum power capability values of the subarrays or generation regions, which are evaluated using a few reference inverters located in every subarray or region. Real-site deployments and tests have been completed in PV power stations to verify the effectiveness of this new distribution strategy, and the proposed FFR solution using this distribution strategy has demonstrated strong performance and potential for wider application scenarios.

Suggested Citation

  • Shuchao Wang & Shenpeng Duan & Gaoxiang Mi & Yuping Lu, 2022. "Optimized Power Distribution Technology for Fast Frequency Response in Photovoltaic Power Stations," Energies, MDPI, vol. 15(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8923-:d:984271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giulio Ferro & Michela Robba & Roberto Sacile, 2020. "A Model Predictive Control Strategy for Distribution Grids: Voltage and Frequency Regulation for Islanded Mode Operation," Energies, MDPI, vol. 13(10), pages 1-27, May.
    2. Massimiliano Chiandone & Riccardo Campaner & Daniele Bosich & Giorgio Sulligoi, 2020. "A Coordinated Voltage and Reactive Power Control Architecture for Large PV Power Plants," Energies, MDPI, vol. 13(10), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyunghwan Choi & Dong Soo Kim & Seok-Kyoon Kim, 2020. "Disturbance Observer-Based Offset-Free Global Tracking Control for Input-Constrained LTI Systems with DC/DC Buck Converter Applications," Energies, MDPI, vol. 13(16), pages 1-18, August.
    2. Robert Małkowski & Michał Izdebski & Piotr Miller, 2020. "Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse," Energies, MDPI, vol. 13(20), pages 1-25, October.
    3. Giulio Ferro & Michela Robba & Roberto Sacile, 2021. "Optimal Control of Smart Distributed Power and Energy Systems," Energies, MDPI, vol. 15(1), pages 1-2, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8923-:d:984271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.