IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8249-d963691.html
   My bibliography  Save this article

Power Flow Modeling of Multi-Circuit Transmission Lines

Author

Listed:
  • Andrey Kryukov

    (Department of Transport Electric Power, Irkutsk State Transport University, 664074 Irkutsk, Russia
    Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

  • Konstantin Suslov

    (Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia
    Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia)

  • Le Van Thao

    (Military Technical Institute of Automation, Hanoi 10000, Vietnam)

  • Tran Duy Hung

    (Military Industrial College, Hanoi 10000, Vietnam)

  • Azat Akhmetshin

    (Department of Power Engineering, Kazan State Power Engineering University, 420066 Kazan, Russia)

Abstract

To reduce the allocation of land for the construction of electric power facilities, it is possible to leverage multi-circuit overhead transmission lines (MCTLs), in which the conductors of several circuits of different voltage classes are placed on the same tower. The unique features of the arrangement of conductors on MCTL towers cause unequal inductances and capacitances of different phases. In addition, there are significant mutual electromagnetic influences on the line circuits. To account for these factors, it is advisable to model the power flow of electric power systems equipped with MCTLs using the phase frame of reference. On the basis of such models, it is possible to determine the power flows while taking into account lateral and transverse asymmetries and to analyze electromagnetic safety conditions along the routes of multi-circuit transmission lines. We proposed a technique for modeling power flows and electromagnetic fields of multi-circuit power transmission lines, in which conductors of several circuits of different voltage classes are placed on the same tower. The methodology is based on the application of phase coordinates, which are the most natural description of three-phase power systems. The method is versatile enough to be applied to solving the specified problems for MCTLs of different designs. The article presents the results of research aimed at developing a method for modeling MCTL power flows. The results of modeling power flows of an electrical network including a three-circuit power transmission line are presented. The practical use of the models developed by the authors will make it possible to make well-grounded choices regarding the options for the use of multi-circuit power lines.

Suggested Citation

  • Andrey Kryukov & Konstantin Suslov & Le Van Thao & Tran Duy Hung & Azat Akhmetshin, 2022. "Power Flow Modeling of Multi-Circuit Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8249-:d:963691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8249/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8249-:d:963691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.