IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6980-d923137.html
   My bibliography  Save this article

Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion

Author

Listed:
  • Jolanta Biegańska

    (Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Cracow, Poland)

  • Krzysztof Barański

    (Department of Mining Engineering and Work Safety, Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Cracow, Poland)

Abstract

The decomposition of seven herbicides (atrazine, linuron, lenacil, chloridazon, dinoseb acetate, prometryn, and diuron) was carried out by detonative combustion. The investigated blasting material was produced on the basis of porous ammonium nitrate, which served as an oxidizer, while the pesticides played the role of the fuel. Detonative decomposition of the mixtures was carried out in blast-holes in soil. The efficiency of the decomposition process was assessed using the techniques of gas chromatography, high-efficiency liquid chromatography, and additionally by biological tests according to the grading of the European Weed Research Council. The results demonstrate an efficient decomposition of the tested herbicides. In the tested soil samples taken after the detonation decomposition of the herbicide, no symptoms of phytotoxic effects on the plants were found. This was confirmed by the lack (or at most negligible amounts) of residual herbicides in the soil samples. Only for the samples of chloradizine and diuron were large amounts of residual biologically active substance found.

Suggested Citation

  • Jolanta Biegańska & Krzysztof Barański, 2022. "Investigation of Herbicide Decomposition Efficiency by Means of Detonative Combustion," Energies, MDPI, vol. 15(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6980-:d:923137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6980/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6980-:d:923137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.