IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6960-d922551.html
   My bibliography  Save this article

High Performance 3.3 kV SiC MOSFET Structure with Built-In MOS-Channel Diode

Author

Listed:
  • Jaeyeop Na

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

  • Minju Kim

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

  • Kwangsoo Kim

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

Abstract

Built-in freewheeling diode metal–oxide–semiconductor field-effect transistors (MOSFETs) that ensure high performance and reliability at high voltages are crucial for chip integration. In this study, a 4H–SiC built-in MOS-channel diode MOSFET with a center P+ implanted structure (CIMCD–MOSFET) is proposed and simulated via technology computer-aided design (TCAD). The CIMCD–MOSFET contains a P+ center implant region, which protects the gate oxide edge from high electric field crowding. Moreover, the region also makes it possible to increase the junction FET (JFET) and N-drift doping concentration of the device by dispersing the high electric field. Consequently, the CIMCD–MOSFET is stable even at a high voltage of 3.3 kV without static degradation and gate oxide reliability issues. The CIMCD–MOSFET also has higher short-circuit withstanding capability owing to the low saturation current and improved switching characteristics due to the low gate-drain capacitance, compared to the conventional MOSFET (C–DMOSFET) and the built-in Schottky barrier diode MOSFET (SBD–MOSFET). The total switching time of a CIMCD–MOSFET is reduced by 52.2% and 42.2%, and the total switching loss is reduced by 67.8% and 41.8%, respectively, compared to the C–DMOSFET and SBD–MOSFET.

Suggested Citation

  • Jaeyeop Na & Minju Kim & Kwangsoo Kim, 2022. "High Performance 3.3 kV SiC MOSFET Structure with Built-In MOS-Channel Diode," Energies, MDPI, vol. 15(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6960-:d:922551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6960/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6960-:d:922551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.