IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6302-d900854.html
   My bibliography  Save this article

A Method for Large Underground Structures Geometry Evaluation Based on Multivariate Parameterization and Multidimensional Analysis of Point Cloud Data

Author

Listed:
  • Adam Wróblewski

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Jacek Wodecki

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Paweł Trybała

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

  • Radosław Zimroz

    (Department of Mining, Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

In underground mining, new workings (tunnels) are constructed by blasting or mechanical excavation. The blasting technique used in underground mines is supported by economic aspects, especially for deposits characterized by hard rocks. Unfortunately, the quality of the result may be different than expected in terms of the general geometry of work or the roughness of excavation surfaces. The blasting technique is also a source of vibrations that may affect other existing structures, affecting their stability. Therefore, it is of great importance to monitor both the quality of the new tunnels and changes in existing tunnels that may cause rockfall from the sidewalls and ceilings of both new and existing tunnels. The length of mining tunnels and support structures in underground mines is massive. Even if one would like to limit monitoring of tunnel geometry to those used every day for major technological processes such as transport, it is a vast amount of work. What is more, any stationary monitoring system is hard to utilize both due to everyday blasting procedures and mobile machine operation. The method proposed here is based on quick LiDAR/Terrestrial Laser Scanner measurements to obtain a cloud of points, which allows generating the spatial model of a mine’s geometry. Data processing procedures are proposed to extract several parameters describing the geometry of the tunnels. Firstly, the model is re-sampled to obtain its uniform structure. Next, a segmentation technique is applied to separate the cross sections with a specific resolution. Statistical parameters are selected to describe each cross section for final 1D feature analysis along the tunnel length. Such a set of parameters may serve as a basis for blasting evaluation, as well as long-term deformation monitoring. The methodology was tested and validated for the data obtained in a former gold and arsenic mine Zloty Stok, Poland.

Suggested Citation

  • Adam Wróblewski & Jacek Wodecki & Paweł Trybała & Radosław Zimroz, 2022. "A Method for Large Underground Structures Geometry Evaluation Based on Multivariate Parameterization and Multidimensional Analysis of Point Cloud Data," Energies, MDPI, vol. 15(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6302-:d:900854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Zimroz & Paweł Trybała & Adam Wróblewski & Mateusz Góralczyk & Jarosław Szrek & Agnieszka Wójcik & Radosław Zimroz, 2021. "Application of UAV in Search and Rescue Actions in Underground Mine—A Specific Sound Detection in Noisy Acoustic Signal," Energies, MDPI, vol. 14(13), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongfeng Li & Pingan Peng & Huan Li & Jinghua Xie & Liangbin Liu & Jing Xiao, 2023. "Drilling Path Planning of Rock-Drilling Jumbo Using a Vehicle-Mounted 3D Scanner," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Paulina Kujawa & Krzysztof Chudy & Aleksandra Banasiewicz & Kacper Leśny & Radosław Zimroz & Fabio Remondino, 2023. "Porosity Assessment in Geological Cores Using 3D Data," Energies, MDPI, vol. 16(3), pages 1-16, January.
    3. Sergey Zhironkin & Dawid Szurgacz, 2023. "Mining Technologies Innovative Development II: The Overview," Energies, MDPI, vol. 16(15), pages 1-5, July.
    4. Adam Wróblewski & Arkadiusz Macek & Aleksandra Banasiewicz & Sebastian Gola & Maciej Zawiślak & Anna Janicka, 2023. "CFD Analysis of the Forced Airflow and Temperature Distribution in the Air-Conditioned Operator’s Cabin of the Stationary Rock Breaker in Underground Mine under Increasing Heat Flux," Energies, MDPI, vol. 16(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    2. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    3. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6302-:d:900854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.