IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5016-d858978.html
   My bibliography  Save this article

Rockburst Intensity Level Prediction Method Based on FA-SSA-PNN Model

Author

Listed:
  • Gang Xu

    (School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China)

  • Kegang Li

    (School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China)

  • Mingliang Li

    (School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China)

  • Qingci Qin

    (School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China)

  • Rui Yue

    (School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China)

Abstract

To accurately and reliably predict the occurrence of rockburst disasters, a rockburst intensity level prediction model based on FA-SSA-PNN is proposed. Crding to the internal and external factors of rockburst occurrence, six rockburst influencing factors ( σ θ , σ t , σ c , σ c / σ t , σ θ / σ c , W et ) were selected to build a rockburst intensity level prediction index system. Seventy-five sets of typical rockburst case data at home and abroad were collected, the original data were preprocessed based on factor analysis (FA), and the comprehensive rockburst prediction indexes, CPI 1 , CPI 2 , and CPI 3 , obtained after dimensionality reduction, were used as the input features of the SSA-PNN model. Sixty sets of rockburst case data were extracted as the training set, and the remaining 15 sets of rockburst case data were used as the test set. After the model training was completed, the model prediction results were analysed and evaluated. The research results show that the proposed rockburst intensity level prediction method based on the FA-SSA-PNN model has the advantages of high prediction accuracy and fast convergence, which can accurately and reliably predict the rockburst intensity level in a short period of time and can be used as a new method for rockburst intensity level prediction, providing better guidance for rockburst prediction problems in deep rock projects.

Suggested Citation

  • Gang Xu & Kegang Li & Mingliang Li & Qingci Qin & Rui Yue, 2022. "Rockburst Intensity Level Prediction Method Based on FA-SSA-PNN Model," Energies, MDPI, vol. 15(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5016-:d:858978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5016/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5016-:d:858978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.