IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p475-d481992.html
   My bibliography  Save this article

An Innovative Technology for Monitoring the Distribution of Abutment Stress in Longwall Mining

Author

Listed:
  • Zhibiao Guo

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Weitao Li

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Songyang Yin

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Dongshan Yang

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Zhibo Ma

    (State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Beijing 100083, China
    School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China)

Abstract

Fracturing roofs to maintain entry (FRME) is a novel longwall mining method, which has been widely used in China, leading a new mining revolution. In order to research the change law of side abutment pressure and movement law of overlying strata when using the FRME, a new abutment pressure monitoring device, namely, the flexible detection unit (FDU), is developed and is applied in the field. The monitoring results show that compared with the head entry (also called the non-splitting entry), the peak value of the lateral abutment pressure in the tail entry (also termed the splitting entry) is reduced by 17.2% on average, and the fluctuation degree becomes smaller. Then, finite difference software FLAC 3D is used to simulate the stress change of the solid coal on both sides of the panel. The simulation results show that the side abutment pressure of the tail entry decreases obviously, which is consistent with the measured results. Comprehensive analysis points out that after splitting and cutting the roof, the fissures can change the motion state of the overlying strata, causing the weight of the overburden borne by the solid coal to reduce; therefore, the side abutment pressure is mitigated.

Suggested Citation

  • Zhibiao Guo & Weitao Li & Songyang Yin & Dongshan Yang & Zhibo Ma, 2021. "An Innovative Technology for Monitoring the Distribution of Abutment Stress in Longwall Mining," Energies, MDPI, vol. 14(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:475-:d:481992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deyuan Fan & Xuesheng Liu & Yunliang Tan & Shilin Song & Qingheng Gu & Lei Yan & Qiang Xu, 2019. "Roof Cutting Parameters Design for Gob-Side Entry in Deep Coal Mine: A Case Study," Energies, MDPI, vol. 12(10), pages 1-25, May.
    2. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    3. Manchao He & Yubing Gao & Jun Yang & Weili Gong, 2017. "An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining," Energies, MDPI, vol. 10(11), pages 1-22, November.
    4. Zhibiao Guo & Qiong Wang & Zhaohua Li & Manchao He & Zhibo Ma & Feixiang Zhong & Jie Hu, 2019. "Surrounding rock control of an innovative gob-side entry retaining with energy-absorbing supporting in deep mining," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(1), pages 23-35.
    5. Yubing Gao & Dongqiao Liu & Xingyu Zhang & Manchao He, 2017. "Analysis and Optimization of Entry Stability in Underground Longwall Mining," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    6. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    7. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    8. Xingen Ma & Manchao He & Jiong Wang & Yubing Gao & Daoyong Zhu & Yuxing Liu, 2018. "Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions," Energies, MDPI, vol. 11(10), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Deschrijver, 2021. "Special Issue: “Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization”," Energies, MDPI, vol. 14(6), pages 1-3, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Liu & Manchao He & Jiong Wang & Zimin Ma, 2021. "Research on Non-Pillar Coal Mining for Thick and Hard Conglomerate Roof," Energies, MDPI, vol. 14(2), pages 1-14, January.
    2. Shengrong Xie & Yiyi Wu & Fangfang Guo & Hang Zou & Dongdong Chen & Xiao Zhang & Xiang Ma & Ruipeng Liu & Chaowen Wu, 2022. "Application of Pre-Splitting and Roof-Cutting Control Technology in Coal Mining: A Review of Technology," Energies, MDPI, vol. 15(17), pages 1-20, September.
    3. Zhenqian Ma & Dongyue Zhang & Yunqin Cao & Wei Yang & Biao Xu, 2022. "Study of Key Technology of Gob-Side Entry Retention in a High Gas Outburst Coal Seam in the Karst Mountain Area," Energies, MDPI, vol. 15(11), pages 1-21, June.
    4. Jinzhu Hu & Manchao He & Jiong Wang & Zimin Ma & Yajun Wang & Xingyu Zhang, 2019. "Key Parameters of Roof Cutting of Gob-Side Entry Retaining in a Deep Inclined Thick Coal Seam with Hard Roof," Energies, MDPI, vol. 12(5), pages 1-19, March.
    5. Jun Yang & Hongyu Wang & Yajun Wang & Binhui Liu & Shilin Hou & Yu Cheng, 2019. "Stability Analysis of the Entry in a New Mining Approach Influenced by Roof Fracture Position," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    6. Xinshuai Shi & Hongwen Jing & Zhenlong Zhao & Yuan Gao & Yuanchao Zhang & Ruodi Bu, 2020. "Physical Experiment and Numerical Modeling on the Failure Mechanism of Gob-Side Entry Driven in Thick Coal Seam," Energies, MDPI, vol. 13(20), pages 1-24, October.
    7. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    8. Zimin Ma & Jiong Wang & Manchao He & Yubing Gao & Jinzhu Hu & Qiong Wang, 2018. "Key Technologies and Application Test of an Innovative Noncoal Pillar Mining Approach: A Case Study," Energies, MDPI, vol. 11(10), pages 1-22, October.
    9. Zhibiao Guo & Haohao Wang & Zimin Ma & Pengfei Wang & Xiaohui Kuai & Xianzhe Zhang, 2021. "Research on the Transmission of Stresses by Roof Cutting near Gob Rocks," Energies, MDPI, vol. 14(5), pages 1-24, February.
    10. Xingen Ma & Manchao He & Jiong Wang & Yubing Gao & Daoyong Zhu & Yuxing Liu, 2018. "Mine Strata Pressure Characteristics and Mechanisms in Gob-Side Entry Retention by Roof Cutting under Medium-Thick Coal Seam and Compound Roof Conditions," Energies, MDPI, vol. 11(10), pages 1-25, September.
    11. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    12. Qiong Wang & Zhibiao Guo & Chun Zhu & Songyang Yin & Dawei Yin, 2021. "The Deformation Characteristics and Lateral Stress of Roadside Crushed Rocks with Different Particles in Non-Pillar Coal Mining," Energies, MDPI, vol. 14(13), pages 1-14, June.
    13. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    14. Lifeng Li & Gan Li & Weili Gong & Jiong Wang & Huilin Deng, 2019. "Energy Evolution Pattern and Roof Control Strategy in Non-Pillar Mining Method of Goaf-Side Entry Retaining by Roof Cutting—A Case Study," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    15. Yajun Wang & Yubing Gao & Eryu Wang & Manchao He & Jun Yang, 2018. "Roof Deformation Characteristics and Preventive Techniques Using a Novel Non-Pillar Mining Method of Gob-Side Entry Retaining by Roof Cutting," Energies, MDPI, vol. 11(3), pages 1-17, March.
    16. Qizhi Chen & Baoping Zou & Zhigang Tao & Manchao He & Bo Hu, 2023. "Construction and Application of an Intelligent Roof Stability Evaluation System for the Roof-Cutting Non-Pillar Mining Method," Sustainability, MDPI, vol. 15(3), pages 1-17, February.
    17. Shixing Cheng & Zhanguo Ma & Peng Gong & Kelong Li & Ning Li & Tuo Wang, 2020. "Controlling the Deformation of a Small Coal Pillar Retaining Roadway by Non-Penetrating Directional Pre-Splitting Blasting with a Deep Hole: A Case Study in Wangzhuang Coal Mine," Energies, MDPI, vol. 13(12), pages 1-23, June.
    18. Yang Yu & Xiangyu Wang & Jianbiao Bai & Lianying Zhang & Hongchun Xia, 2020. "Deformation Mechanism and Stability Control of Roadway Surrounding Rock with Compound Roof: Research and Applications," Energies, MDPI, vol. 13(6), pages 1-19, March.
    19. Yongkang Yang & Peipeng Gao & Chao Zhang & Chenlong Wang, 2023. "Numerical Investigation of the Influence of Roof-Cutting Parameters on the Stability of Top Coal Gob-Side Entry Retaining by Roof Pre-Fracturing in Ultra-Thick Coal Seam," Energies, MDPI, vol. 16(12), pages 1-20, June.
    20. Wenlong Shen & Meng Wang & Zhengzheng Cao & Faqiang Su & Hua Nan & Xuelong Li, 2019. "Mining-Induced Failure Criteria of Interactional Hard Roof Structures: A Case Study," Energies, MDPI, vol. 12(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:475-:d:481992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.