IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p359-d478400.html
   My bibliography  Save this article

Modeling of Heavy-Oil Flow with Regard to Their Rheological Properties

Author

Listed:
  • Ilia Beloglazov

    (Department of Mineral Processing, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Valentin Morenov

    (Department of Oil and Gas, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Ekaterina Leusheva

    (Department of Oil and Gas, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Ove T. Gudmestad

    (Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway)

Abstract

With the depletion of traditional energy resources, the share of heavy-oil production has been increasing recently. According to some estimates, their reserves account for 80% of the world’s oil resources. Costs for extraction of heavy oil and natural bitumen are 3–4 times higher than the costs of extracting light oil, which is due not only to higher density and viscosity indicators but also to insufficient development of equipment and technologies for the extraction, transportation, and processing of such oils. Currently, a single pipeline system is used to pump both light and heavy oil. Therefore, it is necessary to take into account the features of the heavy-oil pumping mode. This paper presents mathematical models of heavy-oil flow in oil-field pipelines. The rheological properties of several heavy-oil samples were determined by experiments. The dependencies obtained were used as input data for a simulation model using computational fluid dynamics (CFD) methods. The modeling condition investigates the range of shear rates up to 300 s −1 . At the same time, results up to 30 s −1 are considered in the developed computational models. The methodology of the research is, thus, based on a CFD approach with experimental confirmation of the results obtained. The proposed rheological flow model for heavy oil reflects the dynamics of the internal structural transformation during petroleum transportation. The validity of the model is confirmed by a comparison between the theoretical and the obtained experimental results. The results of the conducted research can be considered during the selection of heavy-oil treatment techniques for its efficient transportation.

Suggested Citation

  • Ilia Beloglazov & Valentin Morenov & Ekaterina Leusheva & Ove T. Gudmestad, 2021. "Modeling of Heavy-Oil Flow with Regard to Their Rheological Properties," Energies, MDPI, vol. 14(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:359-:d:478400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aidar Kadyirov & Julia Karaeva, 2019. "Ultrasonic and Heat Treatment of Crude Oils," Energies, MDPI, vol. 12(16), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor I. Bolobov & Il’nur U. Latipov & Valentin S. Zhukov & Gregory G. Popov, 2023. "Using the Magnetic Anisotropy Method to Determine Hydrogenated Sections of a Steel Pipeline," Energies, MDPI, vol. 16(15), pages 1-15, July.
    2. Aleksey Dengaev & Vladimir Shishulin & Elena Safiullina & Aleksandra Palyanitsina, 2022. "Modeling Results for the Real Horizontal Heavy-Oil-Production Well of Mechanical Solids," Energies, MDPI, vol. 15(14), pages 1-13, July.
    3. Mikhail Konstantinovich Rogachev & Thang Nguyen Van & Aleksandr Nikolaevich Aleksandrov, 2021. "Technology for Preventing the Wax Deposit Formation in Gas-Lift Wells at Offshore Oil and Gas Fields in Vietnam," Energies, MDPI, vol. 14(16), pages 1-19, August.
    4. Dmitry Mardashov & Victor Duryagin & Shamil Islamov, 2021. "Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions," Energies, MDPI, vol. 14(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinbiao Gao & Pengfei Wu & Chao Li & Delong Xu & Xiuming Wang, 2022. "Influence and Mechanism Study of Ultrasonic Electric Power Input on Heavy Oil Viscosity," Energies, MDPI, vol. 16(1), pages 1-11, December.
    2. Witold Ilewicz & Piotr Skupin & Dariusz Choiński & Wojciech Błotnicki & Zdzisław Bielecki, 2020. "On-Line Estimation of the Ultrasonic Power in a Continuous Flow Sonochemical Reactor," Energies, MDPI, vol. 13(11), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:359-:d:478400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.