IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5223-d620465.html
   My bibliography  Save this article

Prospects for the Application of Wavelet Analysis to the Results of Thermal Conductivity Express Control of Thermal Insulation Materials

Author

Listed:
  • Oleksandra Hotra

    (Department of Electronics and Information Technology, Lublin University of Technology, Nadbystrzycka Str. 38D, 20-618 Lublin, Poland)

  • Svitlana Kovtun

    (Monitoring and Optimization of Thermal Processes Department, Institute of Engineering Thermophysics of NAS of Ukraine, M. Kapnist Str. 2a, 03057 Kyiv, Ukraine)

  • Oleg Dekusha

    (Monitoring and Optimization of Thermal Processes Department, Institute of Engineering Thermophysics of NAS of Ukraine, M. Kapnist Str. 2a, 03057 Kyiv, Ukraine)

  • Żaklin Grądz

    (Department of Electronics and Information Technology, Lublin University of Technology, Nadbystrzycka Str. 38D, 20-618 Lublin, Poland)

Abstract

This article discusses an express control method that allows in situ measurements of the thermal conductivity of insulation materials. Three samples of the most common thermal insulation materials, such as polyurethane, extruded polystyrene, and expanded polystyrene, were studied. Additionally, optical and organic glasses were investigated as materials with a stable value of thermal conductivity. For the measurement of thermal conductivity, the express control device, which implements the differential method of local heat influence, was used. The case studies were focused on the reduction of fluctuations of the measured signals caused by different influencing factors using wavelet transform. The application of wavelet transform for data processing decreased the thermal conductivity measurement’s relative error for organic glass SOL and optical glasses TF-1 and LK-5. The application of wavelet transform thermal conductivity measurement data for polyurethane, extruded polystyrene, and expanded polystyrene allowed to reduce twice the duration of express control while maintaining the same level of measurement error. The results of the investigation could be used to increase the accuracy in express control of the thermal conductivity of insulation materials by improving the data processing. This approach could be implemented in software and does not require a change in the design of the measuring equipment or the use of additional tools.

Suggested Citation

  • Oleksandra Hotra & Svitlana Kovtun & Oleg Dekusha & Żaklin Grądz, 2021. "Prospects for the Application of Wavelet Analysis to the Results of Thermal Conductivity Express Control of Thermal Insulation Materials," Energies, MDPI, vol. 14(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5223-:d:620465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anstett-Collin, F. & Goffart, J. & Mara, T. & Denis-Vidal, L., 2015. "Sensitivity analysis of complex models: Coping with dynamic and static inputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 268-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetiana Bilan & Mykola Kaplin & Vitaliy Makarov & Mykola Perov & Ihor Novitskii & Artur Zaporozhets & Valerii Havrysh & Vitalii Nitsenko, 2022. "The Balance and Optimization Model of Coal Supply in the Flow Representation of Domestic Production and Imports: The Ukrainian Case Study," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Oleksandra Hotra & Svitlana Kovtun & Oleg Dekusha & Żaklin Grądz & Vitalii Babak & Joanna Styczeń, 2022. "Analysis of Low-Density Heat Flux Data by the Wavelet Method," Energies, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Qingqing & Ye, Zhi-Sheng & Yang, Jun & Zhao, Yu, 2016. "Measurement errors in degradation-based burn-in," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 126-135.
    2. Simon Nanty & Céline Helbert & Amandine Marrel & Nadia Pérot & Clémentine Prieur, 2017. "Uncertainty quantification for functional dependent random variables," Computational Statistics, Springer, vol. 32(2), pages 559-583, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5223-:d:620465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.