IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1865-d344281.html
   My bibliography  Save this article

Modeling of Magnetic Elements Including Losses—Application to Variable Inductor

Author

Listed:
  • Sarah Saeed

    (LEMUR Research Group, Department of Electrical, Electronics, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

  • Ramy Georgious

    (LEMUR Research Group, Department of Electrical, Electronics, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

  • Jorge Garcia

    (LEMUR Research Group, Department of Electrical, Electronics, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

Abstract

This paper proposes and develops a circuit-based model aiming to simulate variable magnetic power elements in power electronic converters. The derived model represents the magnetic element by a reluctance-based equivalent circuit. The model takes into consideration device core losses, with the main emphasis given to hysteresis losses, which are modeled using the Jiles-Atherton model. The core loss model is further validated on different ferromagnetic materials to prove its range of applicability. The winding losses of the magnetic device are also taken into consideration, which are obtained using Dowell empirical formulas. In addition, the frequency dependence of the device losses is also considered. The proposed modeling procedure has been applied to study and characterize a double E-core variable power inductor structure in a 1 kW SiC full bridge DC-DC converter. The procedure has been verified by comparing the simulation results to the experimental measurements, confirming the validity and accuracy of the full circuit-based model.

Suggested Citation

  • Sarah Saeed & Ramy Georgious & Jorge Garcia, 2020. "Modeling of Magnetic Elements Including Losses—Application to Variable Inductor," Energies, MDPI, vol. 13(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1865-:d:344281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1865/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangming Xue & Hongbai Bai & Tuo Li & Zhiying Ren & Xingxing Liu & Chunhong Lu, 2022. "Numerical Solving Method for Jiles-Atherton Model and Influence Analysis of the Initial Magnetic Field on Hysteresis," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    2. Krzysztof Górecki & Kalina Detka, 2023. "SPICE-Aided Models of Magnetic Elements—A Critical Review," Energies, MDPI, vol. 16(18), pages 1-27, September.
    3. Miklós Kuczmann & Tamás Orosz, 2023. "Temperature-Dependent Ferromagnetic Loss Approximation of an Induction Machine Stator Core Material Based on Laboratory Test Measurements," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Daniele Scirè & Gianpaolo Vitale & Marco Ventimiglia & Giuseppe Lullo, 2021. "Non-Linear Inductors Characterization in Real Operating Conditions for Power Density Optimization in SMPS," Energies, MDPI, vol. 14(13), pages 1-19, June.
    5. Łukasz Ciepliński & Michał Gwóźdź & Rafał M. Wojciechowski, 2022. "Application of a Tuned Inductor in a DC Power Supply with an Active Compensation Function," Energies, MDPI, vol. 15(17), pages 1-15, August.
    6. Dejana Herceg & Krzysztof Chwastek & Đorđe Herceg, 2020. "The Use of Hypergeometric Functions in Hysteresis Modeling," Energies, MDPI, vol. 13(24), pages 1-14, December.
    7. Fabio Corti & Alberto Reatti & Gabriele Maria Lozito & Ermanno Cardelli & Antonino Laudani, 2021. "Influence of Non-Linearity in Losses Estimation of Magnetic Components for DC-DC Converters," Energies, MDPI, vol. 14(20), pages 1-16, October.
    8. Michał Gwóźdź, 2022. "The Application of Tuned Inductors in Electric Power Systems," Energies, MDPI, vol. 15(22), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1865-:d:344281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.