IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5667-d436961.html
   My bibliography  Save this article

A Family of High Step-Up Quasi Z-Source Inverters with Coupled Inductor

Author

Listed:
  • Yu Tang

    (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
    Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China)

  • Hao Sun

    (State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
    Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China)

  • Shaoheng Wang

    (Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China)

Abstract

With the continuous development of new energy, there is more and more research on step-up inverters in photovoltaic and wind power generation systems. The Z-source inverter has become a research hotspot because of its small output THD (Total Harmonic Distortion) and high reliability. However, the traditional Z-source inverters cannot meet the higher boost requirements of new energy power generation. The quasi-z-source inverter with stronger boosting ability came into being. The high step-up Z-source inverters presented in existing literature is only focused on one or several topologies and lacks a comparative analysis on different topologies. Based on the quasi-Z-source inverter, this paper proposes a family of quasi-z-source inverters with a coupled inductor. The required voltage gain can be obtained by changing the turns ratio of the coupled inductor, which provides a new control variable for the system and makes the design of the system becomes more flexible. Through the analysis and comparison of each topology in terms of boost capacity, voltage stress, coupled inductor volume, circuit efficiency, and input ripple, the characteristics of each topology are summarized. The representative topology was simulated and analyzed, and a 1 kVA prototype was developed in the laboratory to verify the correctness of the theoretical analysis.

Suggested Citation

  • Yu Tang & Hao Sun & Shaoheng Wang, 2020. "A Family of High Step-Up Quasi Z-Source Inverters with Coupled Inductor," Energies, MDPI, vol. 13(21), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5667-:d:436961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiyong Li & Shiping Pu & Yougen Chen & Renyong Wei, 2020. "An Integration Optimization Strategy of Line Voltage Cascaded Quasi-Z-Source Inverter Parameters Based on GRA-FA," Energies, MDPI, vol. 13(17), pages 1-24, August.
    2. Serhii Stepenko & Oleksandr Husev & Dmitri Vinnikov & Carlos Roncero-Clemente & Sergio Pires Pimentel & Elena Santasheva, 2019. "Experimental Comparison of Two-Level Full-SiC and Three-Level Si–SiC Quasi-Z-Source Inverters for PV Applications," Energies, MDPI, vol. 12(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinh-Thanh Tran & Duc-Tri Do & Van-Dung Do & Minh-Khai Nguyen, 2020. "A Three-Level DC-Link Quasi-Switch Boost T-Type Inverter with Voltage Stress Reduction," Energies, MDPI, vol. 13(14), pages 1-20, July.
    2. Jing Yuan & Yongheng Yang & Frede Blaabjerg, 2020. "A Switched Quasi-Z-Source Inverter with Continuous Input Currents," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "State-Space Model of Quasi-Z-Source Inverter-PV Systems for Transient Dynamics Studies and Network Stability Assessment," Energies, MDPI, vol. 14(14), pages 1-15, July.
    4. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "Quasi-Z-Source Inverter-Based Photovoltaic Power System Modeling for Grid Stability Studies," Energies, MDPI, vol. 14(2), pages 1-16, January.
    5. Carlos D. Fuentes & Marcus Müller & Steffen Bernet & Samir Kouro, 2021. "SiC-MOSFET or Si-IGBT: Comparison of Design and Key Characteristics of a 690 V Grid-Tied Industrial Two-Level Voltage Source Converter," Energies, MDPI, vol. 14(11), pages 1-20, May.
    6. Duc-Tri Do & Vinh-Thanh Tran & Minh-Khai Nguyen, 2021. "Enhanced Boost Factor for Three-Level Quasi-Switched Boost T-Type Inverter," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5667-:d:436961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.