IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5470-d431418.html
   My bibliography  Save this article

Power Scalable Bi-Directional DC-DC Conversion Solutions for Future Aircraft Applications

Author

Listed:
  • Antonio Lamantia

    (Blu Electronic Srl, Via Lavoratori Autobianchi 1, 20033 Desio (MB), Italy)

  • Francesco Giuliani

    (Blu Electronic Srl, Via Lavoratori Autobianchi 1, 20033 Desio (MB), Italy)

  • Alberto Castellazzi

    (Solid-State Power Processing (SP2) Lab, Faculty of Engineering, Kyoto University of Advanced Science, Kyoto 615-8577, Japan)

Abstract

With the introduction of the more electric aircraft, there is growing emphasis on improving overall efficiency and thus gravimetric and volumetric power density, as well as smart functionalities and safety of an aircraft. In future on-board power distribution networks, so-called high voltage DC (HVDC, typically +/−270VDC) supplies will be introduced to facilitate distribution and reduce the associated mass and volume, including harness. Future aircraft power distribution systems will also very likely include energy storage devices (probably, batteries) for emergency back up and engine starting. Correspondingly, novel DC-DC conversion solutions are required, which can interface the traditional low voltage (28 V) DC bus with the new 270 V one. Such solutions presently need to cater for a significant degree of flexibility in their power ratings, power transfer capability and number of inputs/outputs. Specifically, multi-port power-scalable bi-directional converters are required. This paper presents the design and testing of such a solution, addressing the use of leading edge wide-band-gap (WBG) solid state technology, especially silicon carbide (SiC), for use as high-frequency switches within the bi-directional converter on the high-voltage side.

Suggested Citation

  • Antonio Lamantia & Francesco Giuliani & Alberto Castellazzi, 2020. "Power Scalable Bi-Directional DC-DC Conversion Solutions for Future Aircraft Applications," Energies, MDPI, vol. 13(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5470-:d:431418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Welbert A. Rodrigues & Thiago R. Oliveira & Lenin M. F. Morais & Arthur H. R. Rosa, 2018. "Voltage and Power Balance Strategy without Communication for a Modular Solid State Transformer Based on Adaptive Droop Control," Energies, MDPI, vol. 11(7), pages 1-20, July.
    2. Alberto Castellazzi & Emre Gurpinar & Zhenyu Wang & Abdallah Suliman Hussein & Pablo Garcia Fernandez, 2019. "Impact of Wide-Bandgap Technology on Renewable Energy and Smart-Grid Power Conversion Applications Including Storage," Energies, MDPI, vol. 12(23), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Fares & Matias Kippke & Mohamed Rashed & Christian Klumpner & Serhiy Bozhko, 2021. "Development of a Smart Supercapacitor Energy Storage System for Aircraft Electric Power Systems," Energies, MDPI, vol. 14(23), pages 1-13, December.
    2. Salvatore Musumeci, 2022. "Special Issue “Advanced DC-DC Power Converters and Switching Converters”," Energies, MDPI, vol. 15(4), pages 1-5, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1, December.
    2. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    3. Carlo Baron & Ameena S. Al-Sumaiti & Sergio Rivera, 2020. "Impact of Energy Storage Useful Life on Intelligent Microgrid Scheduling," Energies, MDPI, vol. 13(4), pages 1-23, February.
    4. Fabio Corti & Alberto Reatti & Gabriele Maria Lozito & Ermanno Cardelli & Antonino Laudani, 2021. "Influence of Non-Linearity in Losses Estimation of Magnetic Components for DC-DC Converters," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Yuyang Li & Qiuye Sun & Danlu Wang & Sen Lin, 2019. "A Virtual Inertia-Based Power Feedforward Control Strategy for an Energy Router in a Direct Current Microgrid Application," Energies, MDPI, vol. 12(3), pages 1-14, February.
    6. Mohammed Radi & Mohamed Darwish & Gareth Taylor & Ioana Pisica, 2021. "Control Configurations for Reactive Power Compensation at the Secondary Side of the Low Voltage Substation by Using Hybrid Transformer," Energies, MDPI, vol. 14(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5470-:d:431418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.