IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p103-d301589.html
   My bibliography  Save this article

Thermal Analysis of Power Semiconductor Device in Steady-State Conditions

Author

Listed:
  • Adrian Plesca

    (Faculty of Electrical Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. Dimitrie Mangeron, 21–23, 700050 Iasi, Romania)

Abstract

Electronic devices can be damaged in an undesirable manner if the junction temperature achieves high values in order to cause thermal runaway and melting. This paper describes the mathematical model to calculate the power losses in power semiconductor devices used in bidirectional rectifier which supplies a resistive-inductive load. The obtained thermal model can be used to analyse the thermal behaviour of power semiconductors in steady-state conditions, at different values of the firing angle, direct current, air speed in the case of forced cooling, and different types of load. Also, the junction and case temperature of a power thyristor have been computed. In order to validate the proposed mathematical model, some experimental tests have been performed. The theoretical values are in good concordance with the experimental data and simulated results.

Suggested Citation

  • Adrian Plesca, 2019. "Thermal Analysis of Power Semiconductor Device in Steady-State Conditions," Energies, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:103-:d:301589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Di Napoli & Alessandro Magnani & Marino Coppola & Pierluigi Guerriero & Vincenzo D’Alessandro & Lorenzo Codecasa & Pietro Tricoli & Santolo Daliento, 2017. "On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction," Energies, MDPI, vol. 10(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humphrey Mokom Njawah Achiri & Vaclav Smidl & Zdenek Peroutka & Lubos Streit, 2020. "Least Squares Method for Identification of IGBT Thermal Impedance Networks Using Direct Temperature Measurements," Energies, MDPI, vol. 13(14), pages 1-13, July.
    2. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas, 2021. "Thermal Analysis of Heat Distribution in Busbars during Rated Current Flow in Low-Voltage Industrial Switchgear," Energies, MDPI, vol. 14(9), pages 1-23, April.
    2. Krzysztof Górecki, 2021. "Influence of the Semiconductor Devices Cooling Conditions on Characteristics of Selected DC–DC Converters," Energies, MDPI, vol. 14(6), pages 1-16, March.
    3. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Łukasz Kozarek & Desire Dauphin Rasolomampionona & Tomasz Żelaziński & Adam Smolarczyk, 2021. "Transient Thermal Analysis of NH000 gG 100A Fuse Link Employing Finite Element Method," Energies, MDPI, vol. 14(5), pages 1-18, March.
    4. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Daniel Zalewski, 2021. "Transient Thermal Analysis of the Circuit Breaker Current Path with the Use of FEA Simulation," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Issam A. Smadi & Saher Albatran & Hamzeh J. Ahmad, 2018. "On the Performance Optimization of Two-Level Three-Phase Grid-Feeding Voltage-Source Inverters," Energies, MDPI, vol. 11(2), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:103-:d:301589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.