IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1447-d150579.html
   My bibliography  Save this article

The Effect of Unbalanced Impedance Loads on the Short-Circuit Current

Author

Listed:
  • Insu Kim

    (School of Electrical Engineering, Inha University, Incheon 22212, Korea)

Abstract

Conventional short-circuit studies often neglect the load current because the short-circuit current (SCC) flowing from generators is much greater than the SCC that is affected by various loading conditions. As distributed or clustered loads that are unbalanced in phases are connected to the grid, they can also change the magnitude and phase angle of the SCC, despite their small capacities. Thus, the objective of this study is to present algorithms that are able to analyze such an impedance unbalanced load. For this purpose, this study initially derives an SCC model of the unbalanced impedance load in phases. Since the proposed SCC model requires the pre-fault voltage, it uses a power-flow analysis algorithm that iteratively calculates the current that is to be injected and the pre-fault voltage, using the bus impedance matrix. Then, the proposed SCC calculation algorithm transforms the unbalanced loads into equivalent impedances, using the pre-fault voltage, and adds them to sequence networks as input data, using the proposed SCC model. The proposed algorithms are verified in various case studies. As a result, the proposed SCC calculation algorithms are more accurate, because they do not neglect unbalanced loads.

Suggested Citation

  • Insu Kim, 2018. "The Effect of Unbalanced Impedance Loads on the Short-Circuit Current," Energies, MDPI, vol. 11(6), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1447-:d:150579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niancheng Zhou & Jiafang Wu & Qianggang Wang, 2018. "Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy," Energies, MDPI, vol. 11(3), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avni Alidemaj & Qendrim Nika, 2020. "Important Factors for Consideration during the Specification of SF6 Circuit Breakers for High Voltage Generators," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Jing Li & Tao Zheng & Zengping Wang, 2018. "Short-Circuit Current Calculation and Harmonic Characteristic Analysis for a Doubly-Fed Induction Generator Wind Turbine under Converter Control," Energies, MDPI, vol. 11(9), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1447-:d:150579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.