IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p837-d139523.html
   My bibliography  Save this article

The Fault Detection, Localization, and Tolerant Operation of Modular Multilevel Converters with an Insulated Gate Bipolar Transistor (IGBT) Open Circuit Fault

Author

Listed:
  • Wei Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Changping District, Beijing 102206, China)

  • Gengyin Li

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Changping District, Beijing 102206, China)

  • Rong Zeng

    (Power Electronics and Electric Machine Group, Oak Ridge National Laboratory, Knoxville, TN 37932, USA)

  • Kai Ni

    (Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK)

  • Yihua Hu

    (Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK)

  • Huiqing Wen

    (Department of Electrical and Electronic Engineering, Xi’an Jiaotong Liverpool University, Suzhou 215123, China)

Abstract

Reliability is one of the critical issues for a modular multilevel converter (MMC) since it consists of a large number of series-connected power electronics submodules (SMs). In this paper, a complete control strategy including fault detection, localization, and tolerant operation is proposed for the MMC under an insulated gate bipolar transistor (IGBT) open circuit fault. According to the output characteristics of the SM with the open-circuit fault of IGBT, a fault detection method based on the circulating current and output current observation is used. In order to further precisely locate the position of the faulty SM, a fault localization method based on the SM capacitor voltage observation is developed. After the faulty SM is isolated, the continuous operation of the converter is ensured by adopting the fault-tolerant strategy based on the use of redundant modules. To verify the proposed fault detection, fault localization, and fault-tolerant operation strategies, a 900 kVA MMC system under the conditions of an IGBT open circuit is developed in the Matlab/Simulink platform. The capabilities of rapid detection, precise positioning, and fault-tolerant operation of the investigated detection and control algorithms are also demonstrated.

Suggested Citation

  • Wei Li & Gengyin Li & Rong Zeng & Kai Ni & Yihua Hu & Huiqing Wen, 2018. "The Fault Detection, Localization, and Tolerant Operation of Modular Multilevel Converters with an Insulated Gate Bipolar Transistor (IGBT) Open Circuit Fault," Energies, MDPI, vol. 11(4), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:837-:d:139523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Liu & Ke Ma & Poh Chiang Loh & Frede Blaabjerg, 2015. "Online Fault Identification Based on an Adaptive Observer for Modular Multilevel Converters Applied to Wind Power Generation Systems," Energies, MDPI, vol. 8(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyunghwan Choi & Kyung-Soo Kim & Seok-Kyoon Kim, 2019. "Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer," Energies, MDPI, vol. 12(8), pages 1-14, April.
    2. Kuei-Hsiang Chao & Chen-Hou Ke, 2020. "Fault Diagnosis and Tolerant Control of Three-Level Neutral-Point Clamped Inverters in Motor Drives," Energies, MDPI, vol. 13(23), pages 1-25, November.
    3. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.
    4. Yiqi Liu & Danhua Li & Yu Jin & Qingbo Wang & Wenlong Song, 2018. "Research on Unbalance Fault-Tolerant Control Strategy of Modular Multilevel Photovoltaic Grid-Connected Inverter," Energies, MDPI, vol. 11(6), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jikai Chen & Yanhui Dou & Yang Li & Jiang Li & Guoqing Li, 2016. "A Transient Fault Recognition Method for an AC-DC Hybrid Transmission System Based on MMC Information Fusion," Energies, MDPI, vol. 10(1), pages 1-20, December.
    2. Kyunghwan Choi & Kyung-Soo Kim & Seok-Kyoon Kim, 2019. "Proportional-Type Sensor Fault Diagnosis Algorithm for DC/DC Boost Converters Based on Disturbance Observer," Energies, MDPI, vol. 12(8), pages 1-14, April.
    3. Dae-Seak Cha & Jung-Sik Choi & Seung-Yeol Oh & Hyun-Jin Ahn & Young-Cheol Lim, 2018. "Hot-Swappable Modular Converter System Control for Heterogeneous Batteries and ESS," Energies, MDPI, vol. 11(2), pages 1-19, February.
    4. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    5. Fayun Zhou & An Luo & Yan Li & Qianming Xu & Zhixing He & Josep M. Guerrero, 2017. "Double-Carrier Phase-Disposition Pulse Width Modulation Method for Modular Multilevel Converters," Energies, MDPI, vol. 10(4), pages 1-23, April.
    6. Zhijie Liu & Kejun Li & Yuanyuan Sun & Jinyu Wang & Zhuodi Wang & Kaiqi Sun & Meiyan Wang, 2018. "A Steady-State Analysis Method for Modular Multilevel Converters Connected to Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems," Energies, MDPI, vol. 11(2), pages 1-31, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:837-:d:139523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.