IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p1005-d142275.html
   My bibliography  Save this article

Performance and Accuracy Investigation of the Two-Step Algorithm for Power System State and Line Temperature Estimation

Author

Listed:
  • Michal Wydra

    (Department of Power Systems, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland)

Abstract

Data concerning actual temperatures of line conductors constitutes essential information for the power system operator. The temperature of the power lines can be used to improve the accuracy of the power system model, thereby increasing the accuracy of the state estimation. This article presents a two-step algorithm for the power system state and line temperature estimation. In its second stage, the proposed method searches for a line temperatures vector, which corrects the uncertain power system base model and allows for further minimization of an objective function. As a result, a more accurate estimation is obtained along with a more precise model of the estimated system. The derived model can then be used for more accurate optimization. The presented method enhances standard procedures of power system state estimation, and its advantage is that it does not require direct measurements performed by phasor measurement units or measurements of line conductor temperatures and weather conditions realized by dynamic line rating systems. The results of simulations made on various test models have been examined, confirming the convergence of the procedure to the point at which the average temperature of the line wires together with the voltage values and phase angles are achieved. The algorithm’s performance and improvement method have also been presented. An advantage of the investigated approach is the possibility to calculate the temperature of line wires with the use of primary measurements in the power system. The presented and examined method, however, is sensitive to the measuring device errors. Additionally, an analysis of the method’s errors and ways of reducing them has been performed.

Suggested Citation

  • Michal Wydra, 2018. "Performance and Accuracy Investigation of the Two-Step Algorithm for Power System State and Line Temperature Estimation," Energies, MDPI, vol. 11(4), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:1005-:d:142275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/1005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/1005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Jin & Xueyu Shen, 2018. "A Mixed WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 11(2), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngo Minh Khoa & Doan Duc Tung, 2018. "Locating Fault on Transmission Line with Static Var Compensator Based on Phasor Measurement Unit," Energies, MDPI, vol. 11(9), pages 1-14, September.
    2. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.
    3. Zhi Wu & Xiao Du & Wei Gu & Ping Ling & Jinsong Liu & Chen Fang, 2018. "Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks," Energies, MDPI, vol. 11(7), pages 1-19, July.
    4. Yuanqian Ma & Xianyong Xiao & Ying Wang, 2018. "Investment Strategy and Multi–Objective Optimization Scheme for Premium Power under the Background of the Opening of Electric Retail Side," Energies, MDPI, vol. 11(8), pages 1-25, August.
    5. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Operational Efficiency of Chinese Provincial Electricity Grid Enterprises: An Evaluation Employing a Three-Stage Data Envelopment Analysis (DEA) Model," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    6. Tong Guo & Yajing Gao & Xiaojie Zhou & Yonggang Li & Jiaomin Liu, 2018. "Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units," Energies, MDPI, vol. 11(9), pages 1-17, August.
    7. Raja Masood Larik & Mohd Wazir Mustafa & Muhammad Naveed Aman & Touqeer Ahmed Jumani & Suhaib Sajid & Manoj Kumar Panjwani, 2018. "An Improved Algorithm for Optimal Load Shedding in Power Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    8. Zipeng Liang & Haoyong Chen & Xiaojuan Wang & Idris Ibn Idris & Bifei Tan & Cong Zhang, 2018. "An Extreme Scenario Method for Robust Transmission Expansion Planning with Wind Power Uncertainty," Energies, MDPI, vol. 11(8), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miro Antonijević & Stjepan Sučić & Hrvoje Keserica, 2018. "Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication," Energies, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:1005-:d:142275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.