IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p681-d136775.html
   My bibliography  Save this article

Algorithm for Fast and Efficient Detection and Reaction to Angle Instability Conditions Using Phasor Measurement Unit Data

Author

Listed:
  • Igor Ivanković

    (Croatian Transmission System Operator Ltd., 10000 Zagreb, Croatia)

  • Igor Kuzle

    (Department of Energy and Power Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Ninoslav Holjevac

    (Department of Energy and Power Systems, Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

In wide area monitoring, protection, and control (WAMPAC) systems, angle stability of transmission network is monitored using data from phasor measurement units (PMU) placed on transmission lines. Based on this PMU data stream advanced algorithm for out-of-step condition detection and early warning issuing is developed. The algorithm based on theoretical background described in this paper is backed up by the data and results from corresponding simulations done in Matlab environment. Presented results aim to provide the insights of the potential benefits, such as fast and efficient detection and reaction to angle instability, this algorithm can have on the improvement of the power system protection. Accordingly, suggestion is given how the developed algorithm can be implemented in protection segments of the WAMPAC systems in the transmission system operator control centers.

Suggested Citation

  • Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2018. "Algorithm for Fast and Efficient Detection and Reaction to Angle Instability Conditions Using Phasor Measurement Unit Data," Energies, MDPI, vol. 11(3), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:681-:d:136775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Jin & Fuliang Chu & Cong Ling & Daniel Legrand Mon Nzongo, 2015. "A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 8(4), pages 1-19, April.
    2. Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2017. "Wide Area Information-Based Transmission System Centralized Out-of-Step Protection Scheme," Energies, MDPI, vol. 10(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziad M. Ali & Seyed-Ehsan Razavi & Mohammad Sadegh Javadi & Foad H. Gandoman & Shady H.E. Abdel Aleem, 2018. "Dual Enhancement of Power System Monitoring: Improved Probabilistic Multi-Stage PMU Placement with an Increased Search Space & Mathematical Linear Expansion to Consider Zero-Injection Bus," Energies, MDPI, vol. 11(6), pages 1-17, June.
    2. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.
    3. Gyul Lee & Do-In Kim & Seon Hyeog Kim & Yong-June Shin, 2019. "Multiscale PMU Data Compression via Density-Based WAMS Clustering Analysis," Energies, MDPI, vol. 12(4), pages 1-17, February.
    4. Amirreza Mehri & Kazem Mazlumi & Hamed HashemiDezaki & Mohammad Hasan Mansouri & Ramin Mahyaei, 2023. "A Novel Approach for Elimination of Defects of Blocking and Unblocking in Distance Relays during Power Swing," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Ivanković & Igor Kuzle & Ninoslav Holjevac, 2017. "Wide Area Information-Based Transmission System Centralized Out-of-Step Protection Scheme," Energies, MDPI, vol. 10(5), pages 1-28, May.
    2. Huaiyuan Wang & Baohui Zhang & Zhiguo Hao, 2015. "Response Based Emergency Control System for Power System Transient Stability," Energies, MDPI, vol. 8(12), pages 1-13, November.
    3. Zoran Zbunjak & Igor Kuzle, 2019. "System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs)," Energies, MDPI, vol. 12(17), pages 1-21, September.
    4. Andrey Pazderin & Inga Zicmane & Mihail Senyuk & Pavel Gubin & Ilya Polyakov & Nikita Mukhlynin & Murodbek Safaraliev & Firuz Kamalov, 2023. "Directions of Application of Phasor Measurement Units for Control and Monitoring of Modern Power Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-43, August.
    5. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.
    6. Zhenxing Li & Yang Gong & Lu Wang & Hong Tan & Prominent Lovet Kativu & Pengfei Wang, 2018. "A Regional Protection Partition Strategy Considering Communication Constraints and Its Implementation Techniques," Energies, MDPI, vol. 11(10), pages 1-15, September.
    7. Energies Editorial Office, 2015. "Retraction: A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology. Energies 2015, 8 , 2769–2787," Energies, MDPI, vol. 8(10), pages 1-1, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:681-:d:136775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.