IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1357-d111324.html
   My bibliography  Save this article

Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer

Author

Listed:
  • Yun Yang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Chengxiong Mao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Dan Wang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jie Tian

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ming Yang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Electronic power transformers (EPTs) have been identified as emerging intelligent electronic devices in the future smart grid, e.g., the Energy Internet, especially in the application of renewable energy conversion and management. Considering that the EPT is directly connected to the medium-voltage grid, e.g., a10 kV distribution system, and its cascaded H-bridges structure, the common mode voltage (CMV) issue will be more complex and severe. The CMV will threaten the insulation of the entire EPT device and even produce common mode current. This paper investigates the generated mechanism and characteristics of the CMV in a cascaded H-bridge EPT (CHB-EPT) under both balanced and fault grid conditions. First, the CHB-EPT system is introduced. Then, a three-phase simplified circuit model of the high-voltage side of the EPT system is presented. Combined with a unipolar modulation strategy and carrier phase shifting technology by rigorous mathematical analysis and derivation, the EPT internal CMV and its characteristics are obtained. Moreover, the influence of the sinusoidal pulse width modulation dead time is considered and discussed based on analytical calculation. Finally, the simulation results are provided to verify the validity of the aforementioned model and the analysis results. The proposed theoretical analysis method is also suitable for other similar cascaded converters and can provide a useful theoretical guide for structural design and power density optimization.

Suggested Citation

  • Yun Yang & Chengxiong Mao & Dan Wang & Jie Tian & Ming Yang, 2017. "Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer," Energies, MDPI, vol. 10(9), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1357-:d:111324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pei Huang & Chengxiong Mao & Dan Wang, 2017. "Electric Field Simulations and Analysis for High Voltage High Power Medium Frequency Transformer," Energies, MDPI, vol. 10(3), pages 1-11, March.
    2. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    3. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umashankar Subramaniam & Sagar Mahajan Bhaskar & Dhafer J.Almakhles & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage," Energies, MDPI, vol. 12(17), pages 1-18, September.
    2. Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhonghuan Su & Longfu Luo & Jun Liu & Zhongxiang Li & Hu Luo & Peng Zhao, 2022. "Study of the Harmonic Analysis and Energy Transmission Mechanism of the Frequency Conversion Transformer," Energies, MDPI, vol. 15(2), pages 1-13, January.
    2. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    4. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    5. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    6. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    7. Haonan Tian & Zhongbao Wei & Sriram Vaisambhayana & Madasamy Thevar & Anshuman Tripathi & Philip Kjær, 2019. "A Coupled, Semi-Numerical Model for Thermal Analysis of Medium Frequency Transformer," Energies, MDPI, vol. 12(2), pages 1-16, January.
    8. Shuo Jin & Hao Yu & Xiaopeng Fu & Zhiying Wang & Kai Yuan & Peng Li, 2019. "A Universal Design of FPGA-Based Real-Time Simulator for Active Distribution Networks Based on Reconfigurable Computing," Energies, MDPI, vol. 12(11), pages 1-16, May.
    9. Yong Liu & Qiran Li & Masoud Farzaneh & B. X. Du, 2020. "Image Characteristic Extraction of Ice-Covered Outdoor Insulator for Monitoring Icing Degree," Energies, MDPI, vol. 13(20), pages 1-12, October.
    10. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    11. Rishang Long & Jian Liu & Chunliang Lu & Jiaqi Shi & Jianhua Zhang, 2017. "Coordinated Optimal Operation Method of the Regional Energy Internet," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    12. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    13. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    14. Umashankar Subramaniam & Sagar Mahajan Bhaskar & Dhafer J.Almakhles & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage," Energies, MDPI, vol. 12(17), pages 1-18, September.
    15. Dante Ruiz-Robles & Vicente Venegas-Rebollar & Adolfo Anaya-Ruiz & Edgar L. Moreno-Goytia & Juan R. Rodríguez-Rodríguez, 2018. "Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters," Energies, MDPI, vol. 11(8), pages 1-17, August.
    16. Zheng Changjiang & Wang Qian & Wang Huai & Shen Zhan & Claus Leth Bak, 2021. "Electrical Stress on the Medium Voltage Medium Frequency Transformer," Energies, MDPI, vol. 14(16), pages 1-19, August.
    17. Abid Soomro & Keith R. Pullen & Mustafa E. Amiryar, 2021. "Hybrid PV System with High Speed Flywheel Energy Storage for Remote Residential Loads," Clean Technol., MDPI, vol. 3(2), pages 1-26, April.
    18. Xiaochao Hou & Yao Sun & Wenbin Yuan & Hua Han & Chaolu Zhong & Josep M. Guerrero, 2016. "Conventional P -ω/ Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid," Energies, MDPI, vol. 9(11), pages 1-19, November.
    19. Jinhong Li & Dawei Meng, 2020. "Dynamic and Adjustable New Pattern Four-Vector SVPWM Algorithm for Application in a Five-Phase Induction Motor," Energies, MDPI, vol. 13(7), pages 1-21, April.
    20. Bingda Zhang & Shaowen Fu & Zhao Jin & Ruizhao Hu, 2017. "A Novel FPGA-Based Real-Time Simulator for Micro-Grids," Energies, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1357-:d:111324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.