IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1764-d117431.html
   My bibliography  Save this article

Voltage Optimisation Technology for an Australian Abattoir—A Techno-Economic Evaluation

Author

Listed:
  • GM Shafiullah

    (School of Engineering and IT, Murdoch University, Perth 6150, Australia)

  • Bond Watson

    (Snowy Mountains Engineering Company (SMEC), Fortitude Valley, Brisbane 4006, Australia)

  • Christopher Lund

    (School of Engineering and IT, Murdoch University, Perth 6150, Australia)

  • Md Moktadir Rahman

    (School of Engineering and IT, Murdoch University, Perth 6150, Australia)

  • Gloria Rupf

    (School of Engineering and IT, Murdoch University, Perth 6150, Australia)

  • Jonathan Whale

    (School of Engineering and IT, Murdoch University, Perth 6150, Australia)

Abstract

Optimising voltage levels to a controlled stable level at a facility can not only reduce the cost of energy but also enhance equipment performance, prolong equipment life, reduce maintenance costs and reduce greenhouse gas emissions. Voltage optimisation (VO) technology has been widely used in a number of different industries locally and internationally, but not to a large extent within the red meat processing sector in Australia. To determine whether VO technology can be implemented, and whether it is technically and economically viable for red meat processing sites, this study investigated, through case study analyses, the potential effectiveness of VO technology in Australian abattoirs. Through an extensive literature survey, the study initially explored the need and considerations of deploying VO technologies at a typical red meat processing plant. To determine the advantages of using VO technology the study then performed site analyses to investigate power quality (PQ) issues, such as voltage regulation, harmonics and power factor, at two typical medium-sized abattoirs, one in Western Australia and another in Queensland. Finally, an economic assessment of the use of VO in the red meat processing industry was undertaken to identify the potential electricity savings and payback periods. From the case study analyses, it is evident that power quality issues, such as under voltage, overvoltage, and harmonic distortion, can be reduced and significant energy savings can be achieved with the optimum selection of VO technology and voltage level. The outcomes of this study will enable engineering and operations staff to be better informed about the economic and technical benefits of (and possible issues with) using VO technologies in an abattoir.

Suggested Citation

  • GM Shafiullah & Bond Watson & Christopher Lund & Md Moktadir Rahman & Gloria Rupf & Jonathan Whale, 2017. "Voltage Optimisation Technology for an Australian Abattoir—A Techno-Economic Evaluation," Energies, MDPI, vol. 10(11), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1764-:d:117431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soon-Ryul Nam & Sang-Hee Kang & Joo-Ho Lee & Seon-Ju Ahn & Joon-Ho Choi, 2013. "Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data," Energies, MDPI, vol. 6(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anthony Igiligi & Armin Vielhauer & Mathias Ehrenwirth & Christian Hurm & Thorsten Summ & Christoph Trinkl & Daniel Navarro Gevers, 2023. "Assessment of Conservation Voltage Reduction in Distribution Networks with Voltage Regulating Distribution Transformers," Energies, MDPI, vol. 16(7), pages 1-14, March.
    2. Pyeong-Ik Hwang & Seung-Il Moon & Seon-Ju Ahn, 2016. "A Conservation Voltage Reduction Scheme for a Distribution Systems with Intermittent Distributed Generators," Energies, MDPI, vol. 9(9), pages 1-18, August.
    3. Matthew Rowe & Timur Yunusov & Stephen Haben & William Holderbaum & Ben Potter, 2014. "The Real-Time Optimisation of DNO Owned Storage Devices on the LV Network for Peak Reduction," Energies, MDPI, vol. 7(6), pages 1-24, May.
    4. Kyungsung An & Hao Jan Liu & Hao Zhu & Zhao Yang Dong & Kyeon Hur, 2016. "Evaluation of Conservation Voltage Reduction with Analytic Hierarchy Process: A Decision Support Framework in Grid Operations Planning," Energies, MDPI, vol. 9(12), pages 1-15, December.
    5. Kwan-Shik Shim & Seok-Il Go & Sang-Yun Yun & Joon-Ho Choi & Won Nam-Koong & Chang-Hoon Shin & Seon-Ju Ahn, 2017. "Estimation of Conservation Voltage Reduction Factors Using Measurement Data of KEPCO System," Energies, MDPI, vol. 10(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1764-:d:117431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.