IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p412-d1063694.html
   My bibliography  Save this article

Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control

Author

Listed:
  • Arnaud Segers

    (Functionnal and Evolutionnary Entomology, University of Liège–Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium)

  • Joachim Carpentier

    (Functionnal and Evolutionnary Entomology, University of Liège–Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium)

  • Frédéric Francis

    (Functionnal and Evolutionnary Entomology, University of Liège–Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium)

  • Rudy Caparros Megido

    (Functionnal and Evolutionnary Entomology, University of Liège–Gembloux Agro-Bio Tech, Passage des Déportés, 2, 5030 Gembloux, Belgium)

Abstract

Bruchids are the most important pests of leguminous seeds in the world. In this study, the focus was done on Callosobruchus maculatus , a serious pest of Vigna unguiculata seeds. As no efficient control methods preventing collateral effects on beneficials currently exist, this study investigated whether RNA interference (RNAi) could provide a new biotechnological and selective tool for bruchids control. Three principal objectives were followed including (i) the identification of all RNAi machinery core components and a key protein to silence in C. maculatus genome ( c.f. , dicer-2, argonaute-2, R2D2, and laccase 1 ), (ii) the identification of suitable reference gene for RT-qPCR analyses, and (iii) the micro-injection of dsRNA coding for laccase 1 to adults of C. maculatus to assess gene expression levels by RT-qPCR and potentially related mortalities. Phylogenetical analyses performed from transcriptomic information successfully identified all necessary proteins in the RNAi mechanism and also the open reading frame of laccase 1 in C. maculatus . A new reference gene was identified (i.e., alpha-tubuline 1 ) and coupled with glutiathone S transferase for RT-qPCR analyses. Double-stranded RNAs coding for laccase 1 and green fluorescent protein (control) were produced and 400 ng of each dsRNA were micro-injected into C. maculatus adults. RT-qPCR analyses revealed a stable significant decrease in laccase 1 expression in about 80% of adults treated with laccase 1 dsRNA after three days post-injection. No significant mortalities were observed which is probably related to the non-exposure of adults to anti-nutritional factors that are usually regulated by laccase. Further research should focus either on the feeding larval stage which is directly exposed to anti-nutritional factors, or on other target genes to induce dead phenotypes. This study is the first gene silencing report on a bruchid species and supports RNAi as a potential future method of control.

Suggested Citation

  • Arnaud Segers & Joachim Carpentier & Frédéric Francis & Rudy Caparros Megido, 2023. "Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:412-:d:1063694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Fire & SiQun Xu & Mary K. Montgomery & Steven A. Kostas & Samuel E. Driver & Craig C. Mello, 1998. "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans," Nature, Nature, vol. 391(6669), pages 806-811, February.
    2. Scott M. Hammond & Emily Bernstein & David Beach & Gregory J. Hannon, 2000. "An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells," Nature, Nature, vol. 404(6775), pages 293-296, March.
    3. Gunter Meister & Thomas Tuschl, 2004. "Mechanisms of gene silencing by double-stranded RNA," Nature, Nature, vol. 431(7006), pages 343-349, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    2. Mark G Sterken & L Basten Snoek & Kobus J Bosman & Jikke Daamen & Joost A G Riksen & Jaap Bakker & Gorben P Pijlman & Jan E Kammenga, 2014. "A Heritable Antiviral RNAi Response Limits Orsay Virus Infection in Caenorhabditis elegans N2," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    3. Gersbach, Hans & Sorger, Gerhard & Amon, Christian, 2018. "Hierarchical growth: Basic and applied research," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 434-459.
    4. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    5. Jun Meng & Lin Shi & Yushi Luan, 2014. "Plant microRNA-Target Interaction Identification Model Based on the Integration of Prediction Tools and Support Vector Machine," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    6. Xing Chen & Li Huang, 2017. "LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-28, December.
    7. J. Fulneček, 2007. "Isolation and detection of small RNA molecules," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 53(10), pages 451-455.
    8. Aflaq Hamid & Sahar Saleem, 2022. "Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 58(3), pages 173-184.
    9. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    10. Shew, Aaron M. & Danforth, Diana M. & Nalley, Lawton L. & Nayga, Rodolfo M. Jr. & Tsiboe, Francis & Dixon, Bruce L., 2016. "Consumers’ Willingness-To-Pay for RNAi versus Bt Rice: Are all biotechnologies the same?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235110, Agricultural and Applied Economics Association.
    11. Ian F. Price & Jillian A. Wagner & Benjamin Pastore & Hannah L. Hertz & Wen Tang, 2023. "C. elegans germ granules sculpt both germline and somatic RNAome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Joseph Nsengimana & Lander Bauters & Annelies Haegeman & Godelieve Gheysen, 2013. "Silencing of Mg - pat-10 and Mg - unc-87 in the Plant Parasitic Nematode Meloidogyne graminicola Using siRNAs," Agriculture, MDPI, vol. 3(3), pages 1-12, September.
    13. Emilie Estrabaud & Kevin Appourchaux & Ivan Bièche & Fabrice Carrat & Martine Lapalus & Olivier Lada & Michelle Martinot-Peignoux & Nathalie Boyer & Patrick Marcellin & Michel Vidaud & Tarik Asselah, 2015. "IFI35, mir-99a and HCV Genotype to Predict Sustained Virological Response to Pegylated-Interferon Plus Ribavirin in Chronic Hepatitis C," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
    14. Peike Sheng & Lu Li & Tianqi Li & Yuzhi Wang & Nicholas M. Hiers & Jennifer S. Mejia & Jossie S. Sanchez & Lei Zhou & Mingyi Xie, 2023. "Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Kyle A McQuisten & Andrew S Peek, 2009. "Comparing Artificial Neural Networks, General Linear Models and Support Vector Machines in Building Predictive Models for Small Interfering RNAs," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-14, October.
    16. Le Thi Truc Linh, 2018. "The Microrna 29 family and its regulation," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 18-27.
    17. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
    18. Wei-Jie Pan & Chi-Wei Chen & Yen-Wei Chu, 2011. "siPRED: Predicting siRNA Efficacy Using Various Characteristic Methods," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    19. Thuc Duy Le & Junpeng Zhang & Lin Liu & Jiuyong Li, 2015. "Ensemble Methods for MiRNA Target Prediction from Expression Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    20. Zahra Narimani & Hamid Beigy & Ashar Ahmad & Ali Masoudi-Nejad & Holger Fröhlich, 2017. "Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:412-:d:1063694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.