IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p958-d854993.html
   My bibliography  Save this article

Landscape of Global Gene Expression Reveals Distinctive Tissue Characteristics in Bactrian Camels ( Camelus bactrianus )

Author

Listed:
  • Yuanyuan Luan

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    These authors contributed equally to this work.)

  • Yan Fang

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    These authors contributed equally to this work.)

  • Lin Jiang

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China)

  • Yuehui Ma

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China)

  • Shangjie Wu

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China)

  • Junwen Zhou

    (Bactrian Camel Institute of Alsha, Bayanhot, Inner Mongolia 750306, China)

  • Yabin Pu

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China)

  • Qianjun Zhao

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China)

  • Xiaohong He

    (Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
    National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China)

Abstract

Bactrian camels ( Camelus bactrianus ) are highly adapted to the desert and semi-desert environments of Asia and developed unique physiological adaptations to cold, heat, drought, and nutrient-poor conditions. These animals are an ideal model for studying desert adaptation. However, the transcriptome of different Bactrian camel tissues has not been profiled. This study performed a comprehensive transcriptome analysis of nine fetal and adult tissues. A total of 20,417 coding genes were identified, and 2.4 billion reads were generated. Gene expression and functional analyses revealed that approximately 50% of the identified genes were ubiquitously expressed, and one-third were tissue-elevated genes, which were enriched in pathways related to the biological functions of the corresponding tissue. Weighted gene co-expressed network analysis (WGCNA) identified four modules—fat metabolism, water balance, immunity, and digestion—and several hub genes, including APOA1, TMEM174, CXCL12 , and MYL9 . The analysis of differentially expressed genes (DEGs) between fetal and adult tissues revealed that downregulated genes were enriched in tissue development, whereas upregulated genes were enriched in biological function in adult camels. DEGs in the hump were enriched in immune-related pathways, suggesting that this tissue is involved in immunity. This study is the first to generate a transcriptome atlas of major tissues in Bactrian camels and explores the genes potentially involved in the adaptation to desert environments.

Suggested Citation

  • Yuanyuan Luan & Yan Fang & Lin Jiang & Yuehui Ma & Shangjie Wu & Junwen Zhou & Yabin Pu & Qianjun Zhao & Xiaohong He, 2022. "Landscape of Global Gene Expression Reveals Distinctive Tissue Characteristics in Bactrian Camels ( Camelus bactrianus )," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:958-:d:854993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk M. Anderson & Eugene Maraskovsky & William L. Billingsley & William C. Dougall & Mark E. Tometsko & Eileen R. Roux & Mark C. Teepe & Robert F. DuBose & David Cosman & Laurent Galibert, 1997. "A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function," Nature, Nature, vol. 390(6656), pages 175-179, November.
    2. Michael J. Hawrylycz & Ed S. Lein & Angela L. Guillozet-Bongaarts & Elaine H. Shen & Lydia Ng & Jeremy A. Miller & Louie N. van de Lagemaat & Kimberly A. Smith & Amanda Ebbert & Zackery L. Riley & Chr, 2012. "An anatomically comprehensive atlas of the adult human brain transcriptome," Nature, Nature, vol. 489(7416), pages 391-399, September.
    3. Robin Andersson & Claudia Gebhard & Irene Miguel-Escalada & Ilka Hoof & Jette Bornholdt & Mette Boyd & Yun Chen & Xiaobei Zhao & Christian Schmidl & Takahiro Suzuki & Evgenia Ntini & Erik Arner & Eivi, 2014. "An atlas of active enhancers across human cell types and tissues," Nature, Nature, vol. 507(7493), pages 455-461, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjiao Feng & Liang Zhang & Chunhui Chen & Jintao Sheng & Zhifang Ye & Kanyin Feng & Jing Liu & Ying Cai & Bi Zhu & Zhaoxia Yu & Chuansheng Chen & Qi Dong & Gui Xue, 2022. "A cognitive neurogenetic approach to uncovering the structure of executive functions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Bingnan Li & Patrice Zeis & Yujie Zhang & Alisa Alekseenko & Eliska Fürst & Yerma Pareja Sanchez & Gen Lin & Manu M. Tekkedil & Ilaria Piazza & Lars M. Steinmetz & Vicent Pelechano, 2023. "Differential regulation of mRNA stability modulates transcriptional memory and facilitates environmental adaptation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    4. Meeli Mullari & Nicolas Fossat & Niels H. Skotte & Andrea Asenjo-Martinez & David T. Humphreys & Jens Bukh & Agnete Kirkeby & Troels K. H. Scheel & Michael L. Nielsen, 2023. "Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington’s disease," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Tharick A. Pascoal & Mira Chamoun & Elad Lax & Hsiao-Ying Wey & Monica Shin & Kok Pin Ng & Min Su Kang & Sulantha Mathotaarachchi & Andrea L. Benedet & Joseph Therriault & Firoza Z. Lussier & Frederic, 2022. "[11C]Martinostat PET analysis reveals reduced HDAC I availability in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Vincent Bazinet & Justine Y. Hansen & Reinder Vos de Wael & Boris C. Bernhardt & Martijn P. Heuvel & Bratislav Misic, 2023. "Assortative mixing in micro-architecturally annotated brain connectomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Lynne Krohn & Karl Heilbron & Cornelis Blauwendraat & Regina H. Reynolds & Eric Yu & Konstantin Senkevich & Uladzislau Rudakou & Mehrdad A. Estiar & Emil K. Gustavsson & Kajsa Brolin & Jennifer A. Rus, 2022. "Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Duc-Hau Le, 2021. "A network-based method for predicting disease-associated enhancers," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-20, December.
    12. Nils-Petter Rudqvist & Maud Charpentier & Claire Lhuillier & Erik Wennerberg & Sheila Spada & Caroline Sheridan & Xi Kathy Zhou & Tuo Zhang & Silvia C. Formenti & Jennifer S. Sims & Alicia Alonso & Sa, 2023. "Immunotherapy targeting different immune compartments in combination with radiation therapy induces regression of resistant tumors," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    13. Golia Shafiei & Ben D. Fulcher & Bradley Voytek & Theodore D. Satterthwaite & Sylvain Baillet & Bratislav Misic, 2023. "Neurophysiological signatures of cortical micro-architecture," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Aleksandr Talishinsky & Jonathan Downar & Petra E. Vértes & Jakob Seidlitz & Katharine Dunlop & Charles J. Lynch & Heather Whalley & Andrew McIntosh & Fidel Vila-Rodriguez & Zafiris J. Daskalakis & Da, 2022. "Regional gene expression signatures are associated with sex-specific functional connectivity changes in depression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Marco Pagani & Noemi Barsotti & Alice Bertero & Stavros Trakoshis & Laura Ulysse & Andrea Locarno & Ieva Miseviciute & Alessia De Felice & Carola Canella & Kaustubh Supekar & Alberto Galbusera & Vinod, 2021. "mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. María Gordillo-Marañón & Magdalena Zwierzyna & Pimphen Charoen & Fotios Drenos & Sandesh Chopade & Tina Shah & Jorgen Engmann & Nishi Chaturvedi & Olia Papacosta & Goya Wannamethee & Andrew Wong & Ree, 2021. "Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Sheng Wang & Belinda Wang & Vanessa Drury & Sam Drake & Nawei Sun & Hasan Alkhairo & Juan Arbelaez & Clif Duhn & Vanessa H. Bal & Kate Langley & Joanna Martin & Pieter J. Hoekstra & Andrea Dietrich & , 2023. "Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Ada J. S. Chan & Worrawat Engchuan & Miriam S. Reuter & Zhuozhi Wang & Bhooma Thiruvahindrapuram & Brett Trost & Thomas Nalpathamkalam & Carol Negrijn & Sylvia Lamoureux & Giovanna Pellecchia & Rohan , 2022. "Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:958-:d:854993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.