IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v176y2023ics1366554523002053.html
   My bibliography  Save this article

Trip planning for a mobility-as-a-service system: Integrating metros and shared autonomous vehicles

Author

Listed:
  • Yang, Shuang
  • Wu, Jianjun
  • Sun, Huijun
  • Qu, Yunchao

Abstract

Mobility as a service (MaaS) integrates various transport modes into an on-demand and real-time platform, providing door-to-door service, and has received extensive attention. For MaaS, personalized trip planning is important but intractable. In this paper, we present a two-phase decision-support optimization framework for the problem of a MaaS system incorporating metros and shared autonomous vehicles (SAVs). First, a mixed integer programming model is proposed to optimize the routes of heterogeneous travelers considering five transport mode combinations, in which SAVs are regarded as not only a first- and last-mile connector to the metro but also a competitor. Next, the scheduling of SAVs and departure time of each traveler is determined with the purpose of minimizing the SAV operation cost. To apply the proposed framework to scenarios with real-time requests, we adopt the rolling horizon solution method, which includes four sub-modules. The method is evaluated on the Sioux Falls network, and the experimental results show that travelers become more sensitive to the mode choice as the additional time of the metro increases. In addition, the connectivity of the metro network has a considerable influence on the relationship between the metro and SAVs. The methodology can be useful for the trip planning of other transport mode combinations.

Suggested Citation

  • Yang, Shuang & Wu, Jianjun & Sun, Huijun & Qu, Yunchao, 2023. "Trip planning for a mobility-as-a-service system: Integrating metros and shared autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:transe:v:176:y:2023:i:c:s1366554523002053
    DOI: 10.1016/j.tre.2023.103217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:176:y:2023:i:c:s1366554523002053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.