IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v156y2024icp22-39.html
   My bibliography  Save this article

Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks

Author

Listed:
  • Ohlmann, Marc
  • Munoz, François
  • Massol, François
  • Thuiller, Wilfried

Abstract

We develop a spatially realistic model of mutualistic metacommunities that exploits the joint structure of spatial and interaction networks. Assuming that all species have the same colonisation and extinction parameters, this model exhibits a sharp transition between stable non-null equilibrium states and a global extinction state. This behaviour allows defining a threshold on colonisation/extinction parameters for the long-term metacommunity persistence. This threshold, the ‘metacommunity capacity’, extends the metapopulation capacity concept and can be calculated from the spatial and interaction networks without needing to simulate the whole dynamics. In several applications we illustrate how the joint structure of the spatial and the interaction networks affects metacommunity capacity. It results that a weakly modular spatial network and a power-law degree distribution of the interaction network provide the most favourable configuration for the long-term persistence of a mutualistic metacommunity. Our model that encodes several explicit ecological assumptions should pave the way for a larger exploration of spatially realistic metacommunity models involving multiple interaction types.

Suggested Citation

  • Ohlmann, Marc & Munoz, François & Massol, François & Thuiller, Wilfried, 2024. "Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks," Theoretical Population Biology, Elsevier, vol. 156(C), pages 22-39.
  • Handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:22-39
    DOI: 10.1016/j.tpb.2024.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058092400008X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:22-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.