IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v156y2024icp117-129.html
   My bibliography  Save this article

Large effects and the infinitesimal model

Author

Listed:
  • Parsons, Todd L.
  • Ralph, Peter L.

Abstract

The infinitesimal model of quantitative genetics relies on the Central Limit Theorem to stipulate that under additive models of quantitative traits determined by many loci having similar effect size, the difference between an offspring’s genetic trait component and the average of their two parents’ genetic trait components is Normally distributed and independent of the parents’ values. Here, we investigate how the assumption of similar effect sizes affects the model: if, alternatively, the tail of the effect size distribution is polynomial with exponent α<2, then a different Central Limit Theorem implies that sums of effects should be well-approximated by a “stable distribution†, for which single large effects are often still important. Empirically, we first find tail exponents between 1 and 2 in effect sizes estimated by genome-wide association studies of many human disease-related traits. We then show that the independence of offspring trait deviations from parental averages in many cases implies the Gaussian aspect of the infinitesimal model, suggesting that non-Gaussian models of trait evolution must explicitly track the underlying genetics, at least for loci of large effect. We also characterize possible limiting trait distributions of the infinitesimal model with infinitely divisible noise distributions, and compare our results to simulations.

Suggested Citation

  • Parsons, Todd L. & Ralph, Peter L., 2024. "Large effects and the infinitesimal model," Theoretical Population Biology, Elsevier, vol. 156(C), pages 117-129.
  • Handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:117-129
    DOI: 10.1016/j.tpb.2024.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:117-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.