IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v153y2023icp69-90.html
   My bibliography  Save this article

The Recombination Hotspot Paradox: Co-evolution between PRDM9 and its target sites

Author

Listed:
  • Úbeda, Francisco
  • Fyon, Frédéric
  • Bürger, Reinhard

Abstract

Recombination often concentrates in small regions called recombination hotspots where recombination is much higher than the genome’s average. In many vertebrates, including humans, gene PRDM9 specifies which DNA motifs will be the target for breaks that initiate recombination, ultimately determining the location of recombination hotspots. Because the sequence that breaks (allowing recombination) is converted into the sequence that does not break (preventing recombination), the latter sequence is over-transmitted to future generations and recombination hotspots are self-destructive. Given their self-destructive nature, recombination hotspots should eventually become extinct in genomes where they are found. While empirical evidence shows that individual hotspots do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold extinction? Here we formulate a co-evolutionary model of the interaction among sequence-specific gene conversion, fertility selection, and recurrent mutation. We find that allelic frequencies oscillate leading to stable limit cycles. From a biological perspective this means that when fertility selection is weaker than gene conversion, it cannot stop individual hotspots from dying but can save them from extinction by driving their re-activation (resuscitation). In our model, mutation balances death and resuscitation of hotspots, thus maintaining their number over evolutionary time. Interestingly, we find that multiple alleles result in oscillations that are chaotic and multiple targets in oscillations that are asynchronous between targets thus helping to maintain the average genomic recombination probability constant. Furthermore, we find that the level of expression of PRDM9 should control for the fraction of targets that are hotspots and the overall temperature of the genome. Therefore, our co-evolutionary model improves our understanding of how hotspots may be replaced, thus contributing to solve the Recombination Hotspot Paradox. From a more applied perspective our work provides testable predictions regarding the relation between mutation probability and fertility selection with life expectancy of hotspots.

Suggested Citation

  • Úbeda, Francisco & Fyon, Frédéric & Bürger, Reinhard, 2023. "The Recombination Hotspot Paradox: Co-evolution between PRDM9 and its target sites," Theoretical Population Biology, Elsevier, vol. 153(C), pages 69-90.
  • Handle: RePEc:eee:thpobi:v:153:y:2023:i:c:p:69-90
    DOI: 10.1016/j.tpb.2023.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580923000461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2023.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Úbeda, Francisco & Russell, Timothy W. & Jansen, Vincent A.A., 2019. "PRDM9 and the evolution of recombination hotspots," Theoretical Population Biology, Elsevier, vol. 126(C), pages 19-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:153:y:2023:i:c:p:69-90. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.