IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v153y2023icp37-49.html
   My bibliography  Save this article

Evolutionary rescue via niche construction: Infrequent construction can prevent post-invasion extinction

Author

Listed:
  • Longcamp, Alexander
  • Draghi, Jeremy

Abstract

A population experiencing habitat loss can avoid extinction by undergoing genetic adaptation—a process known as evolutionary rescue. Here we analytically approximate the probability of evolutionary rescue via a niche-constructing mutation that allows carriers to convert a novel, unfavorable reproductive habitat to a favorable state at a cost to their fecundity. We analyze competition between mutants and non-niche-constructing wild types, who ultimately require the constructed habitats to reproduce. We find that over-exploitation of the constructed habitats by wild types can generate damped oscillations in population size shortly after mutant invasion, thereby decreasing the probability of rescue. Such post-invasion extinction is less probable when construction is infrequent, habitat loss is common, the reproductive environment is large, or the population’s carrying capacity is small. Under these conditions, wild types are less likely to encounter the constructed habitats and, consequently, mutants are more likely to fix. These results suggest that, without a mechanism that deters wild type inheritance of the constructed habitats, a population undergoing rescue via niche construction may remain prone to short-timescale extinction despite successful mutant invasion.

Suggested Citation

  • Longcamp, Alexander & Draghi, Jeremy, 2023. "Evolutionary rescue via niche construction: Infrequent construction can prevent post-invasion extinction," Theoretical Population Biology, Elsevier, vol. 153(C), pages 37-49.
  • Handle: RePEc:eee:thpobi:v:153:y:2023:i:c:p:37-49
    DOI: 10.1016/j.tpb.2023.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580923000369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2023.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haley A. Lindsey & Jenna Gallie & Susan Taylor & Benjamin Kerr, 2013. "Evolutionary rescue from extinction is contingent on a lower rate of environmental change," Nature, Nature, vol. 494(7438), pages 463-467, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Diaz-Colunga & Alvaro Sanchez & C. Brandon Ogbunugafor, 2023. "Environmental modulation of global epistasis in a drug resistance fitness landscape," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:153:y:2023:i:c:p:37-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.