IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v125y2019icp75-93.html
   My bibliography  Save this article

Exact limits of inference in coalescent models

Author

Listed:
  • Johndrow, James E.
  • Palacios, Julia A.

Abstract

Recovery of population size history from molecular sequence data is an important problem in population genetics. Inference commonly relies on a coalescent model linking the population size history to genealogies. The high computational cost of estimating parameters from these models usually compels researchers to select a subset of the available data or to rely on insufficient summary statistics for statistical inference. We consider the problem of recovering the true population size history from two possible alternatives on the basis of coalescent time data previously considered by Kim et al. (2015). We improve upon previous results by giving exact expressions for the probability of correctly distinguishing between the two hypotheses as a function of the separation between the alternative size histories, the number of individuals, loci, and the sampling times. In more complicated settings we estimate the exact probability of correct recovery by Monte Carlo simulation. Our results give considerably more pessimistic inferential limits than those previously reported. We also extended our analyses to pairwise SMC and SMC’ models of recombination. This work is relevant for optimal design when the inference goal is to test scientific hypotheses about population size trajectories in coalescent models with and without recombination.

Suggested Citation

  • Johndrow, James E. & Palacios, Julia A., 2019. "Exact limits of inference in coalescent models," Theoretical Population Biology, Elsevier, vol. 125(C), pages 75-93.
  • Handle: RePEc:eee:thpobi:v:125:y:2019:i:c:p:75-93
    DOI: 10.1016/j.tpb.2018.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580918300248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi-Gang Tong & Wei-Feng Shi & Di Liu & Jun Qian & Long Liang & Xiao-Chen Bo & Jun Liu & Hong-Guang Ren & Hang Fan & Ming Ni & Yang Sun & Yuan Jin & Yue Teng & Zhen Li & David Kargbo & Foday Dafae & Al, 2015. "Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone," Nature, Nature, vol. 524(7563), pages 93-96, August.
    2. Carmi, Shai & Wilton, Peter R. & Wakeley, John & Pe’er, Itsik, 2014. "A renewal theory approach to IBD sharing," Theoretical Population Biology, Elsevier, vol. 97(C), pages 35-48.
    3. Kim, Junhyong & Mossel, Elchanan & Rácz, Miklós Z. & Ross, Nathan, 2015. "Can one hear the shape of a population history?," Theoretical Population Biology, Elsevier, vol. 100(C), pages 26-38.
    4. Matthew Stephens & Peter Donnelly, 2000. "Inference in molecular population genetics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 605-635.
    5. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    6. Qiaomei Fu & Cosimo Posth & Mateja Hajdinjak & Martin Petr & Swapan Mallick & Daniel Fernandes & Anja Furtwängler & Wolfgang Haak & Matthias Meyer & Alissa Mittnik & Birgit Nickel & Alexander Peltzer , 2016. "The genetic history of Ice Age Europe," Nature, Nature, vol. 534(7606), pages 200-205, June.
    7. Myers, Simon & Fefferman, Charles & Patterson, Nick, 2008. "Can one learn history from the allelic spectrum?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 342-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    2. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    3. Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
    4. Deng, Yun & Song, Yun S. & Nielsen, Rasmus, 2021. "The distribution of waiting distances in ancestral recombination graphs," Theoretical Population Biology, Elsevier, vol. 141(C), pages 34-43.
    5. Ait Kaci Azzou, S. & Larribe, F. & Froda, S., 2016. "Inferring the demographic history from DNA sequences: An importance sampling approach based on non-homogeneous processes," Theoretical Population Biology, Elsevier, vol. 111(C), pages 16-27.
    6. Kim, Junhyong & Mossel, Elchanan & Rácz, Miklós Z. & Ross, Nathan, 2015. "Can one hear the shape of a population history?," Theoretical Population Biology, Elsevier, vol. 100(C), pages 26-38.
    7. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    8. Baharian, Soheil & Gravel, Simon, 2018. "On the decidability of population size histories from finite allele frequency spectra," Theoretical Population Biology, Elsevier, vol. 120(C), pages 42-51.
    9. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Griffiths, Robert C. & Tavaré, Simon, 2018. "Ancestral inference from haplotypes and mutations," Theoretical Population Biology, Elsevier, vol. 122(C), pages 12-21.
    11. Cotter, Daniel J. & Severson, Alissa L. & Rosenberg, Noah A., 2021. "The effect of consanguinity on coalescence times on the X chromosome," Theoretical Population Biology, Elsevier, vol. 140(C), pages 32-43.
    12. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
    15. Birkner, Matthias & Blath, Jochen & Steinrücken, Matthias, 2011. "Importance sampling for Lambda-coalescents in the infinitely many sites model," Theoretical Population Biology, Elsevier, vol. 79(4), pages 155-173.
    16. Guangping Huang & Lingyun Song & Xin Du & Xin Huang & Fuwen Wei, 2023. "Evolutionary genomics of camouflage innovation in the orchid mantis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Chi-Chun Liu & David Witonsky & Anna Gosling & Ju Hyeon Lee & Harald Ringbauer & Richard Hagan & Nisha Patel & Raphaela Stahl & John Novembre & Mark Aldenderfer & Christina Warinner & Anna Di Rienzo &, 2022. "Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Wilton, Peter R. & Baduel, Pierre & Landon, Matthieu M. & Wakeley, John, 2017. "Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference," Theoretical Population Biology, Elsevier, vol. 115(C), pages 1-12.
    20. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:125:y:2019:i:c:p:75-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.