IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v75y2023ics0160791x23001574.html
   My bibliography  Save this article

Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems

Author

Listed:
  • Al-Shetwi, Ali Q.
  • Atawi, Ibrahem E.
  • Abuelrub, Ahmad
  • Hannan, M.A.

Abstract

This study presents a techno-economic analysis of five different hybrid energy systems (HES)-based renewable energy sources (RES) in the northern region of Saudi Arabia. It aims to provide valuable insights into the economic feasibility, technical compatibility, and environmental implications of these systems. To carry out this analysis, hybrid optimization of multiple energy resources (HOMER) software is used. Parameters such as total net price cost (TNPC), cost of energy (COE), initial capital cost (ICC), energy generation and consumption, excess and unmet energy, renewable energy (RE) fraction, and emissions were considered to assess the different HES configurations. The findings demonstrate that the grid-connected photovoltaic/wind turbines (PV/WT) system is the best option in terms of economic perspective with TNPC and COE of $213,099 and $0.0480/kWh, respectively followed by grid-connected PV/fuel cell (FC)/WT and stand-alone PV/diesel generator (DG)/WT/battery systems. The PV/battery and PV/FC/WT/battery green hybridization are the highest cost-effective due to their high initial and replacement battery costs. The grid-connected PV/WT and PV/DG/WT/battery systems are the most efficient in meeting load demand, while the PV/battery and PV/FC/WT/battery hybridization have the highest excess and unmet energy. From an environmental perspective, the stand-alone HES consisting solely of RESs, i.e., PV and batteries, has the lowest emissions, making it one of the most environmentally friendly options. Following closely is the PV/FC/WT/battery configuration, which also demonstrates low emissions. On the other hand, the grid-connected PV/WT system exhibits the highest total GHG emissions, rendering it the least environmentally friendly option. This research provides decision-makers, researchers, and stakeholders with valuable information for selecting the optimal hybrid energy systems, taking into account economic, technical, and environmental considerations.

Suggested Citation

  • Al-Shetwi, Ali Q. & Atawi, Ibrahem E. & Abuelrub, Ahmad & Hannan, M.A., 2023. "Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems," Technology in Society, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:teinso:v:75:y:2023:i:c:s0160791x23001574
    DOI: 10.1016/j.techsoc.2023.102352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X23001574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2023.102352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:75:y:2023:i:c:s0160791x23001574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.