Advanced Search
MyIDEAS: Login to save this article or follow this journal

Characterization of hazard function factorization by Fisher information in minima and upper record values

Contents:

Author Info

  • Hofmann, Glenn
  • Balakrishnan, N.
  • Ahmadi, Jafar
Registered author(s):

    Abstract

    The hazard function is an important characteristic for the analysis of reliability data. It is therefore of interest to see under what conditions it can be expressed as the product of a function of the variable and a function of the parameter. We show that such a factorization can be characterized by the property of Fisher information in minima and upper record values. We present similar results for the reversed hazard rate by the property of Fisher information in maxima and lower record values. These properties imply the characterization of two classes of exponential families.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1D-4FBFNGW-1/2/bcc700a77d5fb18af1e6460538e9849d
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 72 (2005)
    Issue (Month): 1 (April)
    Pages: 51-57

    as in new window
    Handle: RePEc:eee:stapro:v:72:y:2005:i:1:p:51-57

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Fisher information Order statistics Record values Characterization Hazard function Exponential family Reversed hazard rate Minimal repairs;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Gertsbakh, Ilya & Kagan, Abram, 1999. "Characterization of the Weibull distribution by properties of the Fisher information under type-I censoring," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 99-105, March.
    2. Glenn Hofmann, 2004. "Comparing the Fisher information in record data and random observations," Statistical Papers, Springer, vol. 45(4), pages 517-528, October.
    3. Z. Abo-Eleneen & H. Nagaraja, 2002. "Fisher Information in an Order Statistic and its Concomitant," Annals of the Institute of Statistical Mathematics, Springer, vol. 54(3), pages 667-680, September.
    4. Zheng, Gang, 2001. "A characterization of the factorization of hazard function by the Fisher information under Type II censoring with application to the Weibull family," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 249-253, April.
    5. Zheng, Gang & Gastwirth, Joseph L., 2001. "On the Fisher information in randomly censored data," Statistics & Probability Letters, Elsevier, vol. 52(4), pages 421-426, May.
    6. Stepanov, A. V. & Balakrishnan, N. & Hofmann, Glenn, 2003. "Exact distribution and Fisher information of weak record values," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 69-81, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Balakrishnan, N. & Burkschat, Marco & Cramer, Erhard & Hofmann, Glenn, 2008. "Fisher information based progressive censoring plans," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 366-380, December.
    2. Fashandi, M. & Ahmadi, Jafar, 2012. "Characterizations of symmetric distributions based on Rényi entropy," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 798-804.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:1:p:51-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.