Advanced Search
MyIDEAS: Login to save this article or follow this journal

Donkey walk and Dirichlet distributions

Contents:

Author Info

  • Letac, Gérard
Registered author(s):

    Abstract

    The donkey performs a random walk (Xn)n[greater-or-equal, slanted]0 inside a tetrahedron with vertices A1,...,Ad as follows. For r=1,...,d and t=0,1,..., at time dt+r the donkey moves from the point Xdt+r-1 to a point Xdt+r such that the barycentric coordinates of Xdt+r with respect to A1,...,Ar-1,Xdt+r-1,Ar+1,...,Ad have a Dirichlet distribution depending on r. When the parameters are properly chosen, we compute the stationary distributions of the d homogeneous Markov chains (Xdt+r)t[greater-or-equal, slanted]0. For instance, if Xdt+r is uniformly chosen in the tetrahedron with vertices A1,...,Ar-1,Xdt+r-1,Ar+1,...,Ad then the stationary distribution of (Xdt)t[greater-or-equal, slanted]0 is Dirichlet with parameters (d,d-1,...,1).

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1D-45628G4-2/2/0d9943720e54b1b35cce16809e0238c9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 57 (2002)
    Issue (Month): 1 (March)
    Pages: 17-22

    as in new window
    Handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:17-22

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Markov chains in a tetrahedron Random walk on stochastic matrices;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Stoyanov, Jordan & Pirinsky, Christo, 2000. "Random motions, classes of ergodic Markov chains and beta distributions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 293-304, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:57:y:2002:i:1:p:17-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.