IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v152y2019icp15-20.html
   My bibliography  Save this article

Abundance estimation based on optimal estimating function with missing covariates in capture–recapture studies

Author

Listed:
  • Liu, Yang
  • Zhang, Xiuzhen
  • Li, Mengke
  • Liu, Guanfu
  • Zhu, Lin

Abstract

For the abundance parameter in capture–recapture studies with missing covariates, we propose an optimal-estimating-function-based estimator and develop a bootstrap procedure to construct the confidence interval. We illustrate our methods through simulations and the yellow-bellied prinia data.

Suggested Citation

  • Liu, Yang & Zhang, Xiuzhen & Li, Mengke & Liu, Guanfu & Zhu, Lin, 2019. "Abundance estimation based on optimal estimating function with missing covariates in capture–recapture studies," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 15-20.
  • Handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:15-20
    DOI: 10.1016/j.spl.2019.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219301063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Huggins & Wen‐Han Hwang, 2011. "A Review of the Use of Conditional Likelihood in Capture‐Recapture Experiments," International Statistical Review, International Statistical Institute, vol. 79(3), pages 385-400, December.
    2. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    2. Shen-Ming Lee & Truong-Nhat Le & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Estimation of logistic regression with covariates missing separately or simultaneously via multiple imputation methods," Computational Statistics, Springer, vol. 38(2), pages 899-934, June.
    3. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    4. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    5. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    6. Buu-Chau Truong & Nguyen Van Thuan & Nguyen Huu Hau & Michael McAleer, 2019. "Applications of the Newton-Raphson Method in Decision Sciences and Education," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 52-80, December.
    7. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    8. John Ashton & Tim Burnett & Ivan Diaz Rainey & Peter L. Ormosi, 2018. "Has the financial regulatory environment improved in the UK? Capture-Recapture approach to estimate detection and deterrence," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-03, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    9. Matthew R. Schofield & Richard J. Barker & William A. Link & Heloise Pavanato, 2023. "Estimating population size: The importance of model and estimator choice," Biometrics, The International Biometric Society, vol. 79(4), pages 3803-3817, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:15-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.