Advanced Search
MyIDEAS: Login

Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives

Contents:

Author Info

  • Jones, M. C.
  • Sheather, S. J.
Registered author(s):

    Abstract

    Improved kernel-based estimates of integrated squared density derivatives are obtained by reinstating non-stochastic terms that have previously been omitted, and using the bandwidth to (approximately) cancel these positive quantities with the leading smoothing bias terms which are negative. Such estimators have exhibited great practical merit in the context of data-based selection of the bandwidth in kernel density estimation, a motivating application of this work discussed elsewhere.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1D-45FJY85-14/2/97e001d14b95d5fc32ca9ae295f8051e
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 11 (1991)
    Issue (Month): 6 (June)
    Pages: 511-514

    as in new window
    Handle: RePEc:eee:stapro:v:11:y:1991:i:6:p:511-514

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Bandwidth selection bias reduction functional estimation kernel density estimation rates of convergence smoothing;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Tenreiro, Carlos, 2003. "On the asymptotic normality of multistage integrated density derivatives kernel estimators," Statistics & Probability Letters, Elsevier, vol. 64(3), pages 311-322, September.
    2. Powell, James L. & Stoker, Thomas M., 1992. "Optimal bandwidth choice for density-weighted averages," Working papers 3424-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Hidehiko Ichimura & Oliver Linton, 2003. "Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators," STICERD - Econometrics Paper Series /2003/451, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Gonzalez-Manteiga, W. & Sanchez-Sellero, C. & Wand, M. P., 1996. "Accuracy of binned kernel functional approximations," Computational Statistics & Data Analysis, Elsevier, vol. 22(1), pages 1-16, June.
    5. Mizushima, Takamasa, 2000. "Multisample tests for scale based on kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 49(1), pages 81-91, August.
    6. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    7. Farmen, Mark & Marron, J. S., 1999. "An assessment of finite sample performance of adaptive methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 143-168, April.
    8. Hall, Peter & Wolff, Rodney C. L., 1995. "Estimators of integrals of powers of density derivatives," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 105-110, August.
    9. Dimitrios Bagkavos, 2011. "Local linear hazard rate estimation and bandwidth selection," Annals of the Institute of Statistical Mathematics, Springer, vol. 63(5), pages 1019-1046, October.
    10. Hirukawa Masayuki, 2004. "A Two-Stage Plug-In Bandwidth Selection and Its Implementation in Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Working Papers 04005, Concordia University, Department of Economics.
    11. Saavedra, Ángeles & Cao, Ricardo, 1999. "Rate of convergence of a convolution-type estimator of the marginal density of a MA(1) process," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 129-155, April.
    12. Duc Devroye & J. Beirlant & R. Cao & R. Fraiman & P. Hall & M. Jones & Gábor Lugosi & E. Mammen & J. Marron & C. Sánchez-Sellero & J. Uña & F. Udina & L. Devroye, 1997. "Universal smoothing factor selection in density estimation: theory and practice," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 6(2), pages 223-320, December.
    13. Berwin A. TURLACH, . "Bandwidth selection in kernel density estimation: a rewiew," Statistic und Oekonometrie 9307, Humboldt Universitaet Berlin.
    14. Masayuki Hirukawa, 2006. "A Two-Stage Plug-In Bandwidth Selection and Its Implementation for Covariance Estimation," CIRJE F-Series CIRJE-F-431, CIRJE, Faculty of Economics, University of Tokyo.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:11:y:1991:i:6:p:511-514. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.