IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i5p1433-1471.html
   My bibliography  Save this article

Nonparametric estimation of the division rate of an age dependent branching process

Author

Listed:
  • Hoffmann, Marc
  • Olivier, Adélaïde

Abstract

We study the nonparametric estimation of the branching rate B(x) of a supercritical Bellman–Harris population: a particle with age x has a random lifetime governed by B(x); at its death time, it gives rise to k≥2 children with lifetimes governed by the same division rate and so on. We observe in continuous time the process over [0,T]. Asymptotics are taken as T→∞; the data are stochastically dependent and one has to face simultaneously censoring, bias selection and non-ancillarity of the number of observations. In this setting, under appropriate ergodicity properties, we construct a kernel-based estimator of B(x) that achieves the rate of convergence exp(−λBβ2β+1T), where λB is the Malthus parameter and β>0 is the smoothness of the function B(x) in a vicinity of x. We prove that this rate is optimal in a minimax sense and we relate it explicitly to classical nonparametric models such as density estimation observed on an appropriate (parameter dependent) scale. We also shed some light on the fact that estimation with kernel estimators based on data alive at time T only is not sufficient to obtain optimal rates of convergence, a phenomenon which is specific to nonparametric estimation and that has been observed in other related growth-fragmentation models.

Suggested Citation

  • Hoffmann, Marc & Olivier, Adélaïde, 2016. "Nonparametric estimation of the division rate of an age dependent branching process," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1433-1471.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:5:p:1433-1471
    DOI: 10.1016/j.spa.2015.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915002987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnson, Richard A. & Susarla, V. & van Ryzin, John, 1979. "Bayesian non-parametric estimation for age-dependent branching processes," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 307-318, December.
    2. Delmas, Jean-François & Marsalle, Laurence, 2010. "Detection of cellular aging in a Galton-Watson process," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2495-2519, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Ha Hoang & Thanh Mai Pham Ngoc & Vincent Rivoirard & Viet Chi Tran, 2022. "Nonparametric estimation of the fragmentation kernel based on a partial differential equation stationary distribution approximation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 4-43, March.
    2. Hoffmann, Marc & Marguet, Aline, 2019. "Statistical estimation in a randomly structured branching population," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5236-5277.
    3. Alexandre Boumezoued & Marc Hoffmann & Paulien Jeunesse, 2018. "A new inference strategy for general population mortality tables," Working Papers hal-01773665, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bitseki Penda, S. Valère, 2023. "Moderate deviation principles for kernel estimator of invariant density in bifurcating Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 282-314.
    2. Johnson, Richard A. & Evans, James W. & Green, David W., 1999. "Nonparametric Bayesian predictive distributions for future order statistics," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 247-254, February.
    3. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2012. "Asymmetry tests for bifurcating auto-regressive processes with missing data," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1439-1444.
    4. Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
    5. S. Valère Bitseki Penda & Jean-François Delmas, 2023. "Central Limit Theorem for Kernel Estimator of Invariant Density in Bifurcating Markov Chains Models," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1591-1625, September.
    6. Vincent Bansaye & S. Valère Bitseki Penda, 2021. "A Phase Transition for Large Values of Bifurcating Autoregressive Models," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2081-2116, December.
    7. Bercu, Bernard & Blandin, Vassili, 2015. "A Rademacher–Menchov approach for random coefficient bifurcating autoregressive processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1218-1243.
    8. de Saporta, Benoîte & Gégout-Petit, Anne & Marsalle, Laurence, 2014. "Statistical study of asymmetry in cell lineage data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 15-39.
    9. Johnson, Richard A. & Taylor, James R., 2008. "Preservation of some life length classes for age distributions associated with age-dependent branching processes," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2981-2987, December.
    10. S. Valère Bitseki Penda & Adélaïde Olivier, 2017. "Autoregressive functions estimation in nonlinear bifurcating autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 179-210, July.
    11. Bernard Bercu & Vassili Blandin, 2015. "Limit theorems for bifurcating integer-valued autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(1), pages 33-67, April.
    12. Alsmeyer, Gerold & Gröttrup, Sören, 2016. "Branching within branching: A model for host–parasite co-evolution," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1839-1883.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:5:p:1433-1471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.