Advanced Search
MyIDEAS: Login

Existence, minimality and approximation of solutions to BSDEs with convex drivers

Contents:

Author Info

  • Cheridito, Patrick
  • Stadje, Mitja

Abstract

We study the existence of solutions to backward stochastic differential equations with drivers f(t,W,y,z) that are convex in z. We assume f to be Lipschitz in y and W but do not make growth assumptions with respect to z. We first show the existence of a unique solution (Y,Z) with bounded Z if the terminal condition is Lipschitz in W and that it can be approximated by the solutions to properly discretized equations. If the terminal condition is bounded and uniformly continuous in W we show the existence of a minimal continuous supersolution by uniformly approximating the terminal condition with Lipschitz terminal conditions. Finally, we prove the existence of a minimal RCLL supersolution for bounded lower semicontinuous terminal conditions by approximating the terminal condition pointwise from below with Lipschitz terminal conditions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0304414911003164
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Stochastic Processes and their Applications.

Volume (Year): 122 (2012)
Issue (Month): 4 ()
Pages: 1540-1565

as in new window
Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1540-1565

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description

Order Information:
Postal: http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/OOC/InitController?id=505572&ref=505572_01_ooc_1&version=01

Related research

Keywords: Backward stochastic differential equations; Backward stochastic difference equations; Convex drivers; Discrete-time approximations; Supersolutions;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Briand, Philippe & Delyon, Bernard & Mémin, Jean, 2002. "On the robustness of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 229-253, February.
  2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
  2. Gregor Heyne & Michael Kupper & Christoph Mainberger, 2011. "Minimal Supersolutions of BSDEs with Lower Semicontinuous Generators," SFB 649 Discussion Papers SFB649DP2011-067, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1540-1565. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.