IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v36y2014icp220-227.html
   My bibliography  Save this article

Review on Schiff bases and their metal complexes as organic photovoltaic materials

Author

Listed:
  • Wesley Jeevadason, A.
  • Kalidasa Murugavel, K.
  • Neelakantan, M.A.

Abstract

Solar energy sources, having the potential to provide energy services with zero emissions of air pollutants, have become more economically attractive with technological improvements. Organic Solar cells promise to be a significant contributor to our future energy system with suitable efficiencies and low cost. The foundation, basic principles, material requirements and device operation mechanism of organic solar cells has been already reviewed by various authors. This paper highlights the use of Schiff bases and their metal complexes as Photovoltaic materials. Schiff bases having potential Photovoltaic characteristics are also discussed in this paper. Major developments in this field over the past few years and recent research have also been briefly discussed.

Suggested Citation

  • Wesley Jeevadason, A. & Kalidasa Murugavel, K. & Neelakantan, M.A., 2014. "Review on Schiff bases and their metal complexes as organic photovoltaic materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 220-227.
  • Handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:220-227
    DOI: 10.1016/j.rser.2014.04.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Peumans & Soichi Uchida & Stephen R. Forrest, 2003. "Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films," Nature, Nature, vol. 425(6954), pages 158-162, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Iwan & Witalis Pellowski & Krzysztof A. Bogdanowicz, 2021. "Conversion of Radiophotoluminescence Irradiation into Electricity in Photovoltaic Cells. A Review of Theoretical Considerations and Practical Solutions," Energies, MDPI, vol. 14(19), pages 1-39, September.
    2. Iwan, Agnieszka, 2015. "An overview of LC polyazomethines with aliphatic–aromatic moieties: Thermal, optical, electrical and photovoltaic properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 65-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun, H.K. & Careem, M.A. & Arof, A.K., 2013. "Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 148-167.
    2. Masanori Wakizaka & Shohei Kumagai & Hashen Wu & Takuya Sonobe & Hiroaki Iguchi & Takefumi Yoshida & Masahiro Yamashita & Shinya Takaishi, 2022. "Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    3. Yeh, Naichia & Yeh, Pulin, 2013. "Organic solar cells: Their developments and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 421-431.
    4. Kathleen Isabelle Moineau-Chane Ching, 2023. "Impact of Alkyl-Based Side Chains in Conjugated Materials for Bulk Heterojunction Organic Photovoltaic Cells—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    5. Ran Ji & Zongbao Zhang & Yvonne J. Hofstetter & Robin Buschbeck & Christian Hänisch & Fabian Paulus & Yana Vaynzof, 2022. "Perovskite phase heterojunction solar cells," Nature Energy, Nature, vol. 7(12), pages 1170-1179, December.
    6. Muhammad, Mahmud Jamil & Muhammad, Isa Adamu & Sidik, Nor Azwadi Che & Yazid, Muhammad Noor Afiq Witri Muhammad & Mamat, Rizalman & Najafi, G., 2016. "The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 226-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:220-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.