IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v196y2024ics1364032124000704.html
   My bibliography  Save this article

A comparative life cycle assessment of electro-anaerobic digestion to evaluate biomethane generation from organic solid waste

Author

Listed:
  • Wang, Chao
  • Feng, Dong
  • Xia, Ao
  • Nizami, Abdul-Sattar
  • Huang, Yun
  • Zhu, Xianqing
  • Zhu, Xun
  • Liao, Qiang
  • Murphy, Jerry D.

Abstract

Anaerobic digestion is a mature technology, but its application may be constrained by suboptimal feedstock conversion efficiency and associated low biogas production. Electro-anaerobic digestion has been proposed as an innovative technology to boost biogas production performance. This study is the first to assess and compare the life cycle impacts of biomethane production from typical organic solid wastes via conventional and electro-anaerobic digestion within the closed boundary system. The results showed that electro-anaerobic digestion outperformed anaerobic digestion in energy conversion and environmental impact. The energy consumption of electro-anaerobic digestion was reduced by 21.7%–42.6%, the carbon footprint was decreased by 18.0%–42.6%, and the energy conversion ratio was increased by 27.7%–74.3%, as compared to conventional anaerobic digestion. The highest energy conversion ratio (12.8) and the lowest global warming potential (39.6 g CO2-eq MJ−1) were obtained in the electro-anaerobic digestion of animal manure. Parasitic demand in biogas production was the primary energy consumption process in biomethane production from dry straw, while biogas upgrading was the most significant energy consumption process in other systems. Sensitivity analyses indicated that changes in specific methane yield impacted system performance most. The predicted carbon footprint reduction in the future electricity market demonstrated greenhouse gas emissions for produced biomethane as low as 6.2 g CO2-eq MJ−1 at complete decarbonization of electricity. As modelled, the theoretical resource of electro-anaerobic digestion of organic solid wastes in China is 82.6% of the natural gas consumption. This study will provide scientific guidance for efficient methanization of organic solid waste for investment in energy projects.

Suggested Citation

  • Wang, Chao & Feng, Dong & Xia, Ao & Nizami, Abdul-Sattar & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Liao, Qiang & Murphy, Jerry D., 2024. "A comparative life cycle assessment of electro-anaerobic digestion to evaluate biomethane generation from organic solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:rensus:v:196:y:2024:i:c:s1364032124000704
    DOI: 10.1016/j.rser.2024.114347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124000704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:196:y:2024:i:c:s1364032124000704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.