IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v193y2024ics136403212400011x.html
   My bibliography  Save this article

Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review

Author

Listed:
  • Siow, Li Teng
  • Lee, Jun Rong
  • Ooi, Ean Hin
  • Lau, Ee Von

Abstract

Solar photovoltaic (PV) panels are often subjected to high temperature rise, causing their performance to deteriorate. Graphene and graphene derivatives with superior in-plane thermal conductivity ranging up to 3000–5000 W/(m·K) have recently presented new opportunities for improving heat dissipation rates in engineering applications. Cooling methods with the incorporation of graphene and its derivatives in different approaches such as graphene-coated neutral density (ND) filters, graphene-enhanced thermal interface materials (TIM), graphene-enhanced phase change materials (PCM) and graphene nanoplatelets (GnP) nanofluids are reviewed in terms of their significances in promoting heat dissipation in solar PV panels. With a graphene-coated ND filter, the focal spot temperature was reduced by 20 % compared to the infrared filter, and a 12 % enhancement in efficiency was observed. Graphene-enhanced TIM reduced the temperature rise by 34 % compared to the conventional TIM. The employment of GnP-enhanced PCM improved the power output and efficiency of the solar PV system with lower average cell temperature achieved compared to other nanoparticles-enhanced PCM. On the other hand, GnP nanofluid reduced the panel temperature by ∼17 °C, corresponding to an increase of ∼3 W in the power output. The surface temperature at the peak point was 35.8 % lower than the conventional panel when graphene nanofluid was circulated in the solar PV system. These findings have not only shed light on the application of graphene in assisting heat transfer for solar PV cooling, but also provide valuable insights into its applicability across other diverse fields such as heat pipes, heat exchangers, and solar collectors.

Suggested Citation

  • Siow, Li Teng & Lee, Jun Rong & Ooi, Ean Hin & Lau, Ee Von, 2024. "Application of graphene and graphene derivatives in cooling of photovoltaic (PV) solar panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:rensus:v:193:y:2024:i:c:s136403212400011x
    DOI: 10.1016/j.rser.2024.114288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400011X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:193:y:2024:i:c:s136403212400011x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.