IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123010663.html
   My bibliography  Save this article

An innovative bionic offshore wind foundation: Scaled suction caisson

Author

Listed:
  • Li, Dayong
  • Zhao, Jipeng
  • Wu, Yuqi
  • Zhang, Yukun
  • Liang, Hao

Abstract

This paper presents an innovative scaled suction caisson (SSC) for fixing offshore wind turbines (OWTs) to enhance its anti-overturning bearing capacity. The outer wall of the SSC is constructed with a scaled bionic structure referring to snakeskin scales, reducing resistance to installation and increasing pullout capacity, which is verified by model tests that the SSC requires less applied suction and provides higher horizontal bearing capacity in sandy soil compared with the traditional suction caisson (TSC) under the same caisson diameter and height. Also, model test results reveal that the SSC can reduce the height of soil plug and the scaled structure can effectively limit the SSC inclination in comparison to the TSC. Additionally, numerical results show that the ultimate bearing capacity for the SSC increases rapidly when the friction factor λ between the caisson wall-soil interface ranges from 0 to 0.2. Moreover, the sidewall of the SSC dissipates less energy than that of the TSC due to the small displacement of soil near the sidewall. This study confirms that the SSC can eliminate grouting in the space between the top of the soil plug and the bottom of the cap, thus reducing the construction period, construction costs and avoiding marine pollution.

Suggested Citation

  • Li, Dayong & Zhao, Jipeng & Wu, Yuqi & Zhang, Yukun & Liang, Hao, 2024. "An innovative bionic offshore wind foundation: Scaled suction caisson," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010663
    DOI: 10.1016/j.rser.2023.114208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.