IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123010419.html
   My bibliography  Save this article

Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains

Author

Listed:
  • Zhu, Qingyuan
  • Xu, Chengzhen
  • Pan, Yinghao
  • Wu, Jie

Abstract

The critical transmission hubs in global supply chain networks have great potential to reduce carbon emissions, yet this has not received much attention from existing studies. This research combines the structural path betweenness, an extended structural path analysis, and a multi-level modularity optimization algorithm to identify key transmission sectors, paths, and carbon communities in a global supply chain network using the environmentally extended multi-regional input-output analysis. The results show that (1) China's metal industry, power industry, and non-metallic industry are the most crucial transmission centers, and some sectors, such as the paper industry and textile industry in China, are also key transmission hubs, yet they are ignored by traditional accounting methods. From a national viewpoint, China is the most key transmission hub, and its high betweenness is mainly caused by domestic demand. Meanwhile, the CO2 emissions transferred by China to satisfy foreign demand are mainly related to the US, ROW (especially the Asia-Pacific region), and Japan. (2) The transmitted carbon emission is mainly concentrated in the first four production layers, accounting for 69.46 % of the total. (3) The global carbon emission network can be divided into 20 carbon communities. And the largest communities are mainly led by mainland China. Most of the communities contain various national sectors, which offer evidence for international cooperation strategies. The results offer policymakers a new perspective on mitigating environmental stress.

Suggested Citation

  • Zhu, Qingyuan & Xu, Chengzhen & Pan, Yinghao & Wu, Jie, 2024. "Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010419
    DOI: 10.1016/j.rser.2023.114183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.