IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123010286.html
   My bibliography  Save this article

Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response

Author

Listed:
  • Roy, Nibir Baran
  • Das, Debapriya

Abstract

This work proposes a sequential stochastic coordinated energy management scheme (SCEMS) for a multi-energy carrier zero bus microgrid (ZBMG) in the presence of distributed tri-generation plants (TGPs), renewable sources, energy storage systems (ESSs), plug-in hybrid electric vehicles (PHEVs), auxiliary boiler and chiller units, and controllable loads. The first stage of the proposed architecture deals with implementing an integrated price-based demand response program to maximize consumers’ benefits and boost demand-side participation. The impacts of grid-to-vehicle and vehicle-to-grid modes of PHEV operation are investigated in this study. The second stage of this formulated problem considers the optimal power allocation of TGPs, ESS devices and auxiliary units aiming to satisfy economic, environmental, flexible, and reliability-driven objectives. Furthermore, to ensure optimal serving of heat and cooling load, novel heat and cool-following strategies are suggested. The uncertainties associated with the renewable generators, PHEV load, grid energy price, and load demands are modelled and incorporated in the SCEMS following “Hong’s 2m+1 point estimate method”. This stage also optimizes the distribution network structure for efficient microgrid operation. Moreover, a novel P−PQVδ−zero+ bus triplet approach of controlling power factor of dispatchable distributed generator is proposed. The efficacy of the framed problem is corroborated through examples. The simulation studies show that the proposed coordinated energy management strategy can: (1) economically accomplish peak shaving and valley filling for multi-energy demands; (2) reduce operation cost and electric energy loss by 8.19%∼10.38% and 41.63%∼47.91%, respectively; (3) enhance average flexibility index by 4.06%∼5.62% but with a marginal rise in emission by 0.39%∼1.68%; and (4) improve node voltage profile of the system.

Suggested Citation

  • Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010286
    DOI: 10.1016/j.rser.2023.114170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.