IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123009942.html
   My bibliography  Save this article

Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance

Author

Listed:
  • Daems, K.
  • Yadav, P.
  • Dermenci, K.B.
  • Van Mierlo, J.
  • Berecibar, M.

Abstract

The growing demand for enhanced batteries with higher energy density and safety is pushing lithium-ion battery technology towards solid-state batteries. Replacing the liquid with a solid electrolyte significantly improves safety by removing the possibility of leaking flammable organic solvents. Solid electrolytes also enable the use of lithium metal as anode material to obtain battery cells with higher energy density. This review summarizes the classification of all three state-of-the-art solid electrolyte types (inorganic, polymer and composite solid electrolytes) and their governing lithium ion transport mechanisms. Nevertheless, to make solid-state batteries applicable, improvements in ionic conductivity of the solid electrolyte, low electrode-electrolyte interfacial resistance and high compatibility of the solid electrolyte with the electrodes are required. This review paper discusses improvement strategies for solid electrolytes to achieve high ionic conductivity, good flexibility, and high electrode compatibility. Enhanced ionic conductivity can be obtained by suppressing the polymer phase's crystallization (e.g., copolymerization, inorganic fillers, adjusting polymer matrix) and optimizing the physicochemical parameters and the surface of the inorganic phase. Interfacial stability can be improved by using multilayered electrolytes or applying coatings and passivation layers on electrolyte or electrode particles.

Suggested Citation

  • Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009942
    DOI: 10.1016/j.rser.2023.114136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.