IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123008985.html
   My bibliography  Save this article

Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches

Author

Listed:
  • Davidson, Eleni
  • Schwartz, Yair
  • Williams, Joe
  • Mumovic, Dejan

Abstract

A continued upward trend in global greenhouse gas emissions is estimated to see average temperatures rise by 2.7 °C before 2100. This warming effect presents risks to global infrastructure and built assets that should be identified to minimise negative consequences on inhabitants. For higher education estates, a key challenge is to maintain high indoor environmental quality standards whilst mitigating increased cooling loads under future climates. Findings from this meta-analysis suggest that existing passive cooling mechanisms may be insufficient to tolerate predicted increases in summertime temperatures, even in cooler UK climates. Across typologies, peak electricity demand for mechanically cooled higher education buildings was estimated to increase the most for halls of residences (4–27 %) and the least for laboratory buildings (0–5%) by 2080. Under a high emission scenario, the increase in total annual energy consumption by 2050 varies widely across studies (+5–33 %), although almost all cases predict a greater increase in cooling energy consumption than decrease in heating energy consumption. Probabilistic climate projections are the predominant source of uncertainty for predictions of energy demand, with the difference between low and high emission scenarios contributing to 34–44 % of variability in predicted annual cooling energy consumption in 2050. Further research is warranted to identify the most likely indicators of future building performance across a range of university building typologies. This work provides recommendations on expanding the evidence basis through development of standardised climate change impact assessments.

Suggested Citation

  • Davidson, Eleni & Schwartz, Yair & Williams, Joe & Mumovic, Dejan, 2024. "Resilience of the higher education sector to future climates: A systematic review of predicted building energy performance and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123008985
    DOI: 10.1016/j.rser.2023.114040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123008985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.