IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123008766.html
   My bibliography  Save this article

Optimized agrivoltaic tracking for nearly-full commodity crop and energy production

Author

Listed:
  • Grubbs, E.K.
  • Gruss, S.M.
  • Schull, V.Z.
  • Gosney, M.J.
  • Mickelbart, M.V.
  • Brouder, S.
  • Gitau, M.W.
  • Bermel, P.
  • Tuinstra, M.R.
  • Agrawal, R.

Abstract

As the global population accelerates toward a full earth scenario, food, energy, and water demands will increase dramatically. The first order constraints that face resource generation technologies, such as static land availability, compound into second order challenges such as direct competition for the same land and solar photons. Within the contiguous United States, both agriculture and energy production such as solar have turned to densification schemes to increase yields and power per land area, respectively. These technologies coupled with water generation capabilities or management strategies, remain widely separated in their implementation or experience loss in combination. We propose an Agrivoltaic food and energy coproduction architecture to address these challenges, utilizing an Agrivoltaic Array, on-site micrometeorological condition analyses, on-site experimentally validated ray-tracing and irradiance modeling simulation software, as well as crop physiological stage, ear, and height data. Identification of critical time frames in which the relationship between irradiance and yield is highly significant (p less than 0.00005) enables implementation of ideal anti-tracking during those growth periods and solar tracking during all non-critical periods, collectively called critical-time anti-tracking. This reduces power generation to 13.68% during a six-week ideal anti-tracking time frame compared to solar tracking; still, this translates to 86.71% power generation over a year when compared to solar tracking. The reduction in power offsets yield loss, increasing land productivity. This research proposes a technology for near-neutral coproduction of food and energy leveraging already existing hardware for a viable pathway for widespread solar implementation throughout the contiguous United States.

Suggested Citation

  • Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123008766
    DOI: 10.1016/j.rser.2023.114018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123008766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.