IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123007268.html
   My bibliography  Save this article

Performance evaluation of phosphor-based luminescent bricks using different coating methods

Author

Listed:
  • Gencel, Osman
  • Danish, Aamar
  • Yilmaz, Mukremin
  • Erdogmus, Ertugrul
  • Sutcu, Mucahit
  • Sadak, Ferhat
  • Ozbakkaloglu, Togay

Abstract

This study investigates the luminescence and durability properties of SrAl2O4: Eu/Dy phosphor (SP) coated bricks incorporating different coating materials, such as glaze powders (Fx200 and TranspG) and epoxy resin. The luminescent brick specimens were differentiated by materials and methods used for coating, including only SP (S1), SP with low content of glaze powders (S2), SP with high content of glaze powder (S3), and SP with epoxy resin (S4). The performance of specimens was evaluated through surface brightness, spectral analysis, decay characteristics, UV-VIS diffuse absorbance spectral (DAS) analysis, solar light aging resistance, and freeze-thaw resistance. The results revealed that S1, S2, and S4 exhibit the highest surface brightness and radiate slowly for more than 45 s after exciting specimens for 2 min. The peak excitation spectra of S1, S2, S3, and S4 exist between 517.5 nm and 519.5 nm, representing the electron transition between 4d and 5f in Eu2+. The decay characteristics and UV-VIS DAS analysis revealed that all specimens can absorb incident light energy and emit it for a longer time, and the capability of absorbing light energy and afterglow duration of S1 and S4 outperformed that of S2 and S3. Moreover, S1 and S4 exhibit high resistance against solar light aging and freeze-thaw cycles. However, such bricks may lead to a cost increase of 38–75 % compared to conventional bricks, which can be offset by energy conservation. This study suggests that luminescent bricks can be used as a multi-functional building material and contribute towards sustainable development goals.

Suggested Citation

  • Gencel, Osman & Danish, Aamar & Yilmaz, Mukremin & Erdogmus, Ertugrul & Sutcu, Mucahit & Sadak, Ferhat & Ozbakkaloglu, Togay, 2024. "Performance evaluation of phosphor-based luminescent bricks using different coating methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123007268
    DOI: 10.1016/j.rser.2023.113868
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123007268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.