IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v190y2024ipbs1364032123009541.html
   My bibliography  Save this article

A technical review on combined effect of cavitation and silt erosion on Francis turbine

Author

Listed:
  • Kumar, Prashant
  • Singal, S.K.
  • Gohil, Pankaj P.

Abstract

Francis turbine, a reaction type and medium head turbine is most widely used in hydropower plants to generate electricity due to its wide range of operation. Cavitation erosion and silt erosion are hydraulic transient phenomena, which are the common problem associated with hydro turbines. The metallic surface gets damaged due to high local stress caused by collapsing of the vapor bubble while silt erosion removes the material from turbine surface due to the dynamic action of silt particles. Cavitation erosion depends on suction height, temperature, and sigma factor while silt erosion depends on silt size, concentration, flow velocity, and impingement angle. The investigations have been carried out by various researchers on cavitation and silt erosion in the hydro turbines individually and combined. It is revealed that the combined effect of cavitation and silt erosion is more severe than the individual effect. In coalesced effect, the cavitation mechanism may be inhibited or promoted by effect of silt erosion. In this study, a comprehensive review has been carried out to evaluate the effect of cavitation erosion, silt erosion, and combined erosion on the performance of Francis turbine. Due to combined effect, various factors like surface properties, erosion parameters, and flow characteristics are responsible for efficiency loss and material degradation. At present few studies are only marked on the combined effect in hydro turbines. It is therefore required to carry the extensive work for understanding and develop the correlation between the material erosion and performance loss by numerically and experimentally.

Suggested Citation

  • Kumar, Prashant & Singal, S.K. & Gohil, Pankaj P., 2024. "A technical review on combined effect of cavitation and silt erosion on Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
  • Handle: RePEc:eee:rensus:v:190:y:2024:i:pb:s1364032123009541
    DOI: 10.1016/j.rser.2023.114096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:190:y:2024:i:pb:s1364032123009541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.