IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123008250.html
   My bibliography  Save this article

Analyzing electric vehicle battery health performance using supervised machine learning

Author

Listed:
  • Das, Kaushik
  • Kumar, Roushan
  • Krishna, Anurup

Abstract

Lithium-ion batteries having high energy and power densities, fast depleting cost, and multifaceted technological improvement lead to the first choice for electric transportation systems. A noble supervised K nearest neighbors (KNN), support vector regressor (SVR), decision tree (DT), and random forest (RF) regressors machine learning algorithm are developed with different accuracy and usefulness for the state of health estimation from direct measurable indices of voltage, current, and temperature without inherited electrochemical characteristics like voltage hysteresis, aging, degradation level, operational, and environmental effect. Based on the battery dataset from Sandia National Laboratories, the proposed technique is validated. The comparison characteristics are provided with the help of mean absolute percent error (MAPE), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) techniques. The MAPE error at 15 °C for different regression algorithms SVR, DT, KNN, and RF are 2.791E-02, 1.607E-03, 9.957E-04, and 4.323E-03 respectively. The MAE error at 25 °C for different regression algorithms SVR, DT, KNN, and RF are 5.593E-02, 2.379E-03, 2.429E-03, and 5.073E-03 respectively. The RMSE error at 35 °C for different regression algorithms SVR, DT, KNN, and RF are 5.062E-02, 6.862E-03, 6.333E-03, and 1.275E-02 respectively. The MSE error percentages for the testing sample at 35 °C for different regression algorithms are 0.37 %, 0.01 %, 0.01 %, and 0.02 % respectively. The results indicate that KNN and DT exhibit higher precision when applied to lithium-ion batteries for electric vehicles. Collaborating with hardware manufacturers to exchange data has the potential to foster the creation of innovative battery health monitoring systems.

Suggested Citation

  • Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008250
    DOI: 10.1016/j.rser.2023.113967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.