IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v149y2021ics1364032121006055.html
   My bibliography  Save this article

The future of eco-friendly cold mix asphalt

Author

Listed:
  • Shanbara, Hayder Kamil
  • Dulaimi, Anmar
  • Al-Mansoori, Tariq
  • Al-Busaltan, Shakir
  • Herez, Manar
  • Sadique, Monower
  • Abdel-Wahed, Talaat

Abstract

Road pavements are pivotal to the infrastructure, transportation and ultimate efficiency of both the public and the economy. However, they are undeniably having detrimental effects on an already compromised environment. Consequently, a re-think about road pavement construction materials is of paramount importance. Cold mix asphalt (CMA) is a low carbon manufacturing approach to the production of flexible pavement material that has proved to be very promising, both economically and ecologically. This technology allows the manufacture of mixtures at ambient temperatures without heating huge amounts of aggregates and bitumen, this decreasing CO2 emissions and saving energy. In spite of these positive impacts, CMA has a high sensitivity to traffic and environmental stresses due to the existence of water within the mixture, this of major concern to the industry. This study aims to review types of CMA and the main developments involved in cold bitumen emulsion mixture (CBEM) technology that can be used without decreasing in-service performance. This review also aims to provide a practical guide for the manufacture of bitumen emulsion and the design procedure of CBEM for the road pavements industry. Finally, it can be suggested that CMA is a crucial technique for pavement construction, as it provides acceptable performance alongside energy-saving and ecological objectives.

Suggested Citation

  • Shanbara, Hayder Kamil & Dulaimi, Anmar & Al-Mansoori, Tariq & Al-Busaltan, Shakir & Herez, Manar & Sadique, Monower & Abdel-Wahed, Talaat, 2021. "The future of eco-friendly cold mix asphalt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006055
    DOI: 10.1016/j.rser.2021.111318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121006055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thives, Liseane Padilha & Ghisi, Enedir, 2017. "Asphalt mixtures emission and energy consumption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 473-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talaat Abdel-Wahed & Anmar Dulaimi & Hayder Kamil Shanbara & Hassan Al Nageim, 2022. "The Impact of Cement Kiln Dust and Cement on Cold Mix Asphalt Characteristics at Different Climate," Sustainability, MDPI, vol. 14(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Espinoza & Cristian Medina & Alejandra Calabi-Floody & Elsa Sánchez-Alonso & Gonzalo Valdés & Andrés Quiroz, 2020. "Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Anda Ligia Belc & Adrian Ciutina & Raluca Buzatu & Florin Belc & Ciprian Costescu, 2021. "Environmental Impact Assessment of Different Warm Mix Asphalts," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    3. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Yunpeng Zhao & Dimitrios Goulias & Luca Tefa & Marco Bassani, 2021. "Life Cycle Economic and Environmental Impacts of CDW Recycled Aggregates in Roadway Construction and Rehabilitation," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    5. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    6. Moins, B. & France, C. & Van den bergh, W. & Audenaert, A., 2020. "Implementing life cycle cost analysis in road engineering: A critical review on methodological framework choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Jayne F. Knott & Jennifer M. Jacobs & Jo E. Sias & Paul Kirshen & Eshan V. Dave, 2019. "A Framework for Introducing Climate-Change Adaptation in Pavement Management," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    8. Mohammed A. Abed & Bassam A. Tayeh & B. H. Abu Bakar & Rita Nemes, 2021. "Two-Year Non-Destructive Evaluation of Eco-Efficient Concrete at Ambient Temperature and after Freeze-Thaw Cycles," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    9. Bo Peng & Xiaoying Tong & Shijiang Cao & Wenying Li & Gui Xu, 2020. "Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    10. F. C. G. Martinho & L. G. Picado-Santos & S. D. Capitão, 2018. "Feasibility Assessment of the Use of Recycled Aggregates for Asphalt Mixtures," Sustainability, MDPI, vol. 10(6), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:149:y:2021:i:c:s1364032121006055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.