IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v98y2012i1p7-23.html
   My bibliography  Save this article

Safety certification of airborne software: An empirical study

Author

Listed:
  • Dodd, Ian
  • Habli, Ibrahim

Abstract

Many safety-critical aircraft functions are software-enabled. Airborne software must be audited and approved by the aerospace certification authorities prior to deployment. The auditing process is time-consuming, and its outcome is unpredictable, due to the criticality and complex nature of airborne software. To ensure that the engineering of airborne software is systematically regulated and is auditable, certification authorities mandate compliance with safety standards that detail industrial best practice. This paper reviews existing practices in software safety certification. It also explores how software safety audits are performed in the civil aerospace domain. The paper then proposes a statistical method for supporting software safety audits by collecting and analysing data about the software throughout its lifecycle. This method is then empirically evaluated through an industrial case study based on data collected from 9 aerospace projects covering 58 software releases. The results of this case study show that our proposed method can help the certification authorities and the software and safety engineers to gain confidence in the certification readiness of airborne software and predict the likely outcome of the audits. The results also highlight some confidentiality issues concerning the management and retention of sensitive data generated from safety-critical projects.

Suggested Citation

  • Dodd, Ian & Habli, Ibrahim, 2012. "Safety certification of airborne software: An empirical study," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 7-23.
  • Handle: RePEc:eee:reensy:v:98:y:2012:i:1:p:7-23
    DOI: 10.1016/j.ress.2011.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquini, Alberto & Pozzi, Simone & Save, Luca, 2011. "A critical view of severity classification in risk assessment methods," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 53-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascual, R. & Godoy, D. & Louit, D.M., 2011. "Throughput centered prioritization of machines in transfer lines," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1396-1401.
    2. Gulsum Kubra Kaya & James Ward & John Clarkson, 2019. "A Review of Risk Matrices Used in Acute Hospitals in England," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1060-1070, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:98:y:2012:i:1:p:7-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.