IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i7p950-963.html
   My bibliography  Save this article

Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis

Author

Listed:
  • Simon, C.
  • Weber, P.
  • Evsukoff, A.

Abstract

This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks’ inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis.

Suggested Citation

  • Simon, C. & Weber, P. & Evsukoff, A., 2008. "Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 950-963.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:7:p:950-963
    DOI: 10.1016/j.ress.2007.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832007001068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2007.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    2. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L. & Sallaberry, C.J., 2006. "Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1414-1434.
    3. P. Walley & S. Moral, 1999. "Upper probabilities based only on the likelihood function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 831-847.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C Simon & P Weber, 2009. "Imprecise reliability by evidential networks," Journal of Risk and Reliability, , vol. 223(2), pages 119-131, June.
    2. González, Esteban Le Maitre & Desforges, Xavier & Archimède, Bernard, 2018. "Assessment method of the multicomponent systems future ability to achieve productive tasks from local prognoses," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 403-415.
    3. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    4. El Hassene Ait Mokhtar & Radouane Laggoune & Alaa Chateauneuf, 2016. "Utility-Based Maintenance Optimization for Complex Water-Distribution Systems Using Bayesian Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4153-4170, September.
    5. Weidong Zhu & Shaorong Li & Hongtao Zhang & Tianjiao Zhang & Zhimin Li, 2022. "Evaluation of scientific research projects on the basis of evidential reasoning approach under the perspective of expert reliability," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 275-298, January.
    6. Simon, Christophe & Bicking, Frédérique, 2017. "Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 629-638.
    7. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    9. Liu, Qiang, 2021. "Reliability evaluation of two-stage evidence classification system considering preference and error," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Limbourg, Philipp & de Rocquigny, Etienne, 2010. "Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 550-564.
    11. El Hassene Ait Mokhtar & Radouane Laggoune & Alaa Chateauneuf, 2017. "Benefit and customer demand approach for maintenance optimization of complex systems using Bayesian networks," Journal of Risk and Reliability, , vol. 231(5), pages 558-572, October.
    12. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Zhang, Xiaoge & Mahadevan, Sankaran & Deng, Xinyang, 2017. "Reliability analysis with linguistic data: An evidential network approach," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 111-121.
    14. Radim Briš & Petr Byczanski, 2017. "On innovative stochastic renewal process models for exact unavailability quantification of highly reliable systems," Journal of Risk and Reliability, , vol. 231(6), pages 617-627, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    2. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    3. Limbourg, Philipp & de Rocquigny, Etienne, 2010. "Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 550-564.
    4. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    5. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    6. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    7. Vimal Vijayan & Sanjay K Chaturvedi, 2021. "Multi-component maintenance grouping optimization based on stochastic dependency," Journal of Risk and Reliability, , vol. 235(2), pages 293-305, April.
    8. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    9. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    10. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    11. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    12. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    14. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    15. Daniele Codetta-Raiteri & Luigi Portinale, 2014. "Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 228(5), pages 488-503, October.
    16. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    17. Maria Elena De Giuli & Alessandro Greppi & Marina Resta, 2019. "An Object-Oriented Bayesian Framework for the Detection of Market Drivers," Risks, MDPI, vol. 7(1), pages 1-18, January.
    18. Xiahou, Tangfan & Zheng, Yi-Xuan & Liu, Yu & Chen, Hong, 2023. "Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    20. Zhong, Shengtong & Langseth, Helge & Nielsen, Thomas Dyhre, 2014. "A classification-based approach to monitoring the safety of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 61-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:7:p:950-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.