IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i11p1689-1697.html
   My bibliography  Save this article

All-terminal network reliability optimization via probabilistic solution discovery

Author

Listed:
  • Ramirez-Marquez, José Emmanuel
  • Rocco, Claudio M.

Abstract

This paper presents a new algorithm that can be readily applied to solve the all-terminal network reliability allocation problems. The optimization problem solved considers the minimization of the network design cost subject to a known constraint on all-terminal reliability by assuming that the network contains a known number of functionally equivalent components (with different performance specifications) that can be used to provide redundancy. The algorithm is based on two major steps that use a probabilistic solution discovery approach and Monte Carlo simulation to generate the quasi-optimal network designs. Examples for different sizes of all-terminal networks are used throughout the paper to illustrate the approach. The results obtained for the larger networks with unknown optima show that the quality of the solutions generated by the proposed algorithm is significantly higher with respect to other approaches and that these solutions are obtained from restricted solution search space. Although developed for all-terminal reliability optimization, the algorithm can be easily applied in other resource-constrained allocation problems.

Suggested Citation

  • Ramirez-Marquez, José Emmanuel & Rocco, Claudio M., 2008. "All-terminal network reliability optimization via probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1689-1697.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1689-1697
    DOI: 10.1016/j.ress.2008.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George S. Fishman, 1986. "A Monte Carlo Sampling Plan for Estimating Network Reliability," Operations Research, INFORMS, vol. 34(4), pages 581-594, August.
    2. Ramírez-Márquez, José E. & Jiang, Wei, 2006. "Confidence bounds for the reliability of binary capacitated two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 905-914.
    3. Dai, Yuan-Shun & Wang, Xiao-Long, 2006. "Optimal resource allocation on grid systems for maximizing service reliability using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1071-1082.
    4. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2007. "Two-terminal reliability analyses for a mobile ad hoc wireless network," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 821-829.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    2. J. L. Cook & J. E. Ramirez-Marquez, 2007. "Reliability of capacitated mobile ad hoc networks," Journal of Risk and Reliability, , vol. 221(4), pages 307-318, December.
    3. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2008. "Reliability analysis of cluster-based ad-hoc networks," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1512-1522.
    4. Forghani-elahabad, Majid & Mahdavi-Amiri, Nezam, 2015. "An efficient algorithm for the multi-state two separate minimal paths reliability problem with budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 472-481.
    5. Rocco S, Claudio M. & Ramirez-Marquez, José Emmanuel, 2009. "Deterministic network interdiction optimization via an evolutionary approach," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 568-576.
    6. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    7. Masahiro Sasabe & Miyu Otani & Takanori Hara & Shoji Kasahara, 2024. "Path reachability including distance-constrained detours," Journal of Risk and Reliability, , vol. 238(1), pages 79-92, February.
    8. Wang, Yong & Li, Lin & Huang, Shuhong & Chang, Qing, 2012. "Reliability and covariance estimation of weighted k-out-of-n multi-state systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 138-147.
    9. Padmavathy, N. & Chaturvedi, Sanjay K., 2013. "Evaluation of mobile ad hoc network reliability using propagation-based link reliability model," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 1-9.
    10. Zdravko I. Botev & Pierre L'Ecuyer & Gerardo Rubino & Richard Simard & Bruno Tuffin, 2013. "Static Network Reliability Estimation via Generalized Splitting," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 56-71, February.
    11. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Kakadia, Deepak & Ramirez-Marquez, Dr. Jose Emmanuel, 2020. "Quantitative approaches for optimization of user experience based on network resilience for wireless service provider networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Amit Dua & Neeraj Kumar & Seema Bawa, 2017. "ReIDD: reliability-aware intelligent data dissemination protocol for broadcast storm problem in vehicular ad hoc networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(3), pages 439-458, March.
    14. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Paredes, R. & Dueñas-Osorio, L. & Meel, K.S. & Vardi, M.Y., 2019. "Principled network reliability approximation: A counting-based approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Chakraborty, Suparna & Goyal, N.K. & Mahapatra, S. & Soh, Sieteng, 2020. "A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Yi-Kuei Lin & Cheng-Fu Huang & Chin-Chia Chang, 2022. "Reliability of spare routing via intersectional minimal paths within budget and time constraints by simulation," Annals of Operations Research, Springer, vol. 312(1), pages 345-368, May.
    18. H. Cancela & M. Khadiri & G. Rubino, 2012. "A new simulation method based on the RVR principle for the rare event network reliability problem," Annals of Operations Research, Springer, vol. 196(1), pages 111-136, July.
    19. Chen, Binchao & Phillips, Aaron & Matis, Timothy I., 2012. "Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 72-79.
    20. Jane, Chin-Chia & Shen, Wu-Hsien & Laih, Yih-Wenn, 2009. "Practical sequential bounds for approximating two-terminal reliability," European Journal of Operational Research, Elsevier, vol. 195(2), pages 427-441, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1689-1697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.